An extension of Ortiz' recursive formulation of the tau method to certain linear systems of ordinary differential equations

Authors:
M. R. Crisci and E. Russo

Journal:
Math. Comp. **41** (1983), 27-42

MSC:
Primary 65L05; Secondary 65L07

MathSciNet review:
701622

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Ortiz' step-by-step recursive formulation of the Lanczos tau method is extended to the numerical solution of linear systems of differential equations with polynomial coefficients.

Numerical comparisons are made with Gear's and Enright's methods.

**[1]**C. A. Addison,*Implementing a Stiff Method Based upon the Second Derivative Formulas*, Tech. Rep. No. 130/79, University of Toronto, Dept. of Computer Science, 1979.**[2]**G. D. Byrne and A. C. Hindmarsh,*A polyalgorithm for the numerical solution of ordinary differential equations*, ACM Trans. Math. Software**1**(1975), no. 1, 71–96. MR**0378432****[3]**M. R. Crisci and E. Russo,*𝐴-stability of a class of methods for the numerical integration of certain linear systems of ordinary differential equations*, Math. Comp.**38**(1982), no. 158, 431–435. MR**645660**, 10.1090/S0025-5718-1982-0645660-2**[4]**W. H. Enright,*Second derivative multistep methods for stiff ordinary differential equations*, SIAM J. Numer. Anal.**11**(1974), 321–331. MR**0351083****[5]**W. H. Enright, T. E. Hull & B. Lindberg, "Comparing numerical methods for stiff systems of O.D.E.: s,"*BIT*, v. 15, 1975, pp. 10-48.**[6]**C. W. Gear,*The automatic integration of stiff ordinary differential equations.*, Information Processing 68 (Proc. IFIP Congress, Edinburgh, 1968) North-Holland, Amsterdam, 1969, pp. 187–193. MR**0260180****[7]**T. E. Hull, W. H. Enright, B. M. Fellen, and A. E. Sedgwick,*Comparing numerical methods for ordinary differential equations*, SIAM J. Numer. Anal.**9**(1972), 603–637; errata, ibid. 11 (1974), 681. MR**0351086****[8]**F. T. Krogh, "On testing a subroutine for the numerical integration of ordinary differential equations,"*Comm. ACM*, v. 20, 1973, pp. 545-562.**[9]**C. Lanczos, "Trigonometric interpolation of empirical and analytical functions,"*J. Math. Phys.*, v. 17, 1938, pp. 123-199.**[10]**Cornelius Lanczos,*Applied analysis*, Prentice Hall, Inc., Englewood Cliffs, N. J., 1956. MR**0084175****[11]**C. Lánczos,*Legendre versus Chebyshev polynomials*, Topics in numerical analysis (Proc. Roy. Irish Acad. Conf., University Coll., Dublin, 1972) Academic Press, London, 1973, pp. 191–201. MR**0341880****[12]**Leon Lapidus and John H. Seinfeld,*Numerical solution of ordinary differential equations*, Mathematics in Science and Engineering, Vol. 74, Academic Press, New York-London, 1971. MR**0281355****[13]**Eduardo L. Ortiz,*The tau method*, SIAM J. Numer. Anal.**6**(1969), 480–492. MR**0258287****[14]**E. Ortiz, W. F. Pursuer & F. J. Canizares,*Automation of the Tau Method*, Report Math. Dept., University of London, 1972.**[15]**Eduardo L. Ortiz,*Canonical polynomials in the Lanczos tau method*, Studies in numerical analysis (papers in honour of Cornelius Lanczos on the occasion of his 80th birthday), Academic Press, London, 1974, pp. 73–93. MR**0474847****[16]**E. L. Ortiz and H. Samara,*An operational approach to the tau method for the numerical solution of nonlinear differential equations*, Computing**27**(1981), no. 1, 15–25 (English, with German summary). MR**623173**, 10.1007/BF02243435**[17]**E. L. Ortiz,*Step by step Tau method. I. Piecewise polynomial approximations*, Computers and mathematics with applications, Pergamon, Oxford, 1976, pp. 381–392. MR**0464550****[18]**E. L. Ortiz,*On the numerical solution of nonlinear and functional differential equations with the tau method*, Numerical treatment of differential equations in applications (Proc. Meeting, Math. Res. Center, Oberwolfach, 1977) Lecture Notes in Math., vol. 679, Springer, Berlin, 1978, pp. 127–139. MR**515576**

Retrieve articles in *Mathematics of Computation*
with MSC:
65L05,
65L07

Retrieve articles in all journals with MSC: 65L05, 65L07

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1983-0701622-9

Article copyright:
© Copyright 1983
American Mathematical Society