Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Runge-Kutta theory for Volterra and Abel integral equations of the second kind


Author: Ch. Lubich
Journal: Math. Comp. 41 (1983), 87-102
MSC: Primary 65R20
DOI: https://doi.org/10.1090/S0025-5718-1983-0701626-6
MathSciNet review: 701626
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The present paper develops the local theory of general Runge-Kutta methods for a broad class of weakly singular and regular Volterra integral equations of the second kind. Further, the smoothness properties of the exact solutions of such equations are investigated.


References [Enhancements On Off] (What's this?)

  • [1] M. Abramowitz & I. A. Stegun (Editors), Handbook of Mathematical Functions, Dover, New York, 1964.
  • [2] U. an der Heiden, Analysis of Neural Networks, Lecture Notes in Biomathematics, Vol. 35, Springer-Verlag, Berlin, Heidelberg, New York, 1980. MR 617008 (84b:92020)
  • [3] H. Brunner, E. Hairer & S. P. Nørsett, "Runge-Kutta theory for Volterra integral equations of the second kind," Math. Comp., v. 39, 1982, pp. 147-163. MR 658219 (83f:65203)
  • [4] H. Brunner & S. P. Nørsett, "Superconvergence of collocation methods for Volterra and Abel integral equations of the second kind," Numer. Math. v. 36, 1981, pp. 347-358. MR 614853 (83e:65202)
  • [5] H. Brunner & H. J. J. te Riele, Volterra-Type Integral Equations of the Second Kind with Non-Smooth Solutions: High-Order Methods Based on Collocation Techniques, Report NW 118, Mathematisch Centrum, Amsterdam, 1982.
  • [6] J. C. Butcher, "Implicit Runge-Kutta and related methods," in Modern Numerical Methods for Ordinary Differential Equations (G. Hall and J. M. Watt, eds.), Clarendon Press, Oxford, 1976, pp. 136-151.
  • [7] F. de Hoog & R. Weiss, "High order methods for a class of Volterra integral equations with weakly singular kernels," SIAM J. Numer. Anal., v. 11, 1974, pp. 1166-1180. MR 0368458 (51:4699)
  • [8] E. Hairer & G. Wanner, "On the Butcher group and general multi-value methods," Computing, v. 13, 1974, pp. 1-15. MR 0403225 (53:7037)
  • [9] R. K. Miller & A. Feldstein, "Smoothness of solutions of Volterra integral equations with weakly singular kernels," SIAM J. Math. Anal., v. 2, 1971, pp. 242-258. MR 0287258 (44:4465)
  • [10] S. P. Nørsett & G. Wanner, "The real-pole sandwich for rational approximations and oscillation equations," BIT, v. 19, 1979, pp. 79-94. MR 530118 (81d:65040)
  • [11] H. Oules, "Resolution numérique d'une équation intégrale singulière," Rev. Française Traitement Information, v. 7, 1964, pp. 117-124. MR 0172478 (30:2697)
  • [12] P. Pouzet, "Etude en vue de leur traitement numérique des équations intégrales de type Volterra," Rev. Française Traitement Information, v. 6, 1963, pp. 79-112. MR 0152152 (27:2132)
  • [13] H. J. J. te Riele, Collocation Methods for Weakly Singular Second Kind Volterra Integral Equations with Non-Smooth Solution, Report NW 115, Mathematisch Centrum, Amsterdam, 1981.
  • [14] B. Ferebee, The Tangent Approximation to One-Sided Brownian Exit Densities, Univ. Heidelberg, SFB 123, Techn. Rep. Nr. 138, 1981. MR 679677 (84c:60120)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65R20

Retrieve articles in all journals with MSC: 65R20


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1983-0701626-6
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society