Runge-Kutta theory for Volterra and Abel integral equations of the second kind

Author:
Ch. Lubich

Journal:
Math. Comp. **41** (1983), 87-102

MSC:
Primary 65R20

DOI:
https://doi.org/10.1090/S0025-5718-1983-0701626-6

MathSciNet review:
701626

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The present paper develops the local theory of general Runge-Kutta methods for a broad class of weakly singular and regular Volterra integral equations of the second kind. Further, the smoothness properties of the exact solutions of such equations are investigated.

**[1]**M. Abramowitz & I. A. Stegun (Editors),*Handbook of Mathematical Functions*, Dover, New York, 1964.**[2]**U. an der Heiden,*Analysis of Neural Networks*, Lecture Notes in Biomathematics, Vol. 35, Springer-Verlag, Berlin, Heidelberg, New York, 1980. MR**617008 (84b:92020)****[3]**H. Brunner, E. Hairer & S. P. Nørsett, "Runge-Kutta theory for Volterra integral equations of the second kind,"*Math. Comp.*, v. 39, 1982, pp. 147-163. MR**658219 (83f:65203)****[4]**H. Brunner & S. P. Nørsett, "Superconvergence of collocation methods for Volterra and Abel integral equations of the second kind,"*Numer. Math.*v. 36, 1981, pp. 347-358. MR**614853 (83e:65202)****[5]**H. Brunner & H. J. J. te Riele,*Volterra-Type Integral Equations of the Second Kind with Non-Smooth Solutions*:*High-Order Methods Based on Collocation Techniques*, Report NW 118, Mathematisch Centrum, Amsterdam, 1982.**[6]**J. C. Butcher, "Implicit Runge-Kutta and related methods," in*Modern Numerical Methods for Ordinary Differential Equations*(G. Hall and J. M. Watt, eds.), Clarendon Press, Oxford, 1976, pp. 136-151.**[7]**F. de Hoog & R. Weiss, "High order methods for a class of Volterra integral equations with weakly singular kernels,"*SIAM J. Numer. Anal.*, v. 11, 1974, pp. 1166-1180. MR**0368458 (51:4699)****[8]**E. Hairer & G. Wanner, "On the Butcher group and general multi-value methods,"*Computing*, v. 13, 1974, pp. 1-15. MR**0403225 (53:7037)****[9]**R. K. Miller & A. Feldstein, "Smoothness of solutions of Volterra integral equations with weakly singular kernels,"*SIAM J. Math. Anal.*, v. 2, 1971, pp. 242-258. MR**0287258 (44:4465)****[10]**S. P. Nørsett & G. Wanner, "The real-pole sandwich for rational approximations and oscillation equations,"*BIT*, v. 19, 1979, pp. 79-94. MR**530118 (81d:65040)****[11]**H. Oules, "Resolution numérique d'une équation intégrale singulière,"*Rev. Française Traitement Information*, v. 7, 1964, pp. 117-124. MR**0172478 (30:2697)****[12]**P. Pouzet, "Etude en vue de leur traitement numérique des équations intégrales de type Volterra,"*Rev. Française Traitement Information*, v. 6, 1963, pp. 79-112. MR**0152152 (27:2132)****[13]**H. J. J. te Riele,*Collocation Methods for Weakly Singular Second Kind Volterra Integral Equations with Non-Smooth Solution*, Report NW 115, Mathematisch Centrum, Amsterdam, 1981.**[14]**B. Ferebee,*The Tangent Approximation to One-Sided Brownian Exit Densities*, Univ. Heidelberg, SFB 123, Techn. Rep. Nr. 138, 1981. MR**679677 (84c:60120)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65R20

Retrieve articles in all journals with MSC: 65R20

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1983-0701626-6

Article copyright:
© Copyright 1983
American Mathematical Society