Sinc function quadrature rules for the Fourier integral

Author:
John Lund

Journal:
Math. Comp. **41** (1983), 103-113

MSC:
Primary 65D30

DOI:
https://doi.org/10.1090/S0025-5718-1983-0701627-8

MathSciNet review:
701627

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper a numerical algorithm is proposed for the computation of the Fourier Transform. The quadrature rule developed is based on the Whittaker Cardinal Function expansion of the integrand and a certain Conformal Map. The error of the method is analyzed and numerical results are reported which confirm the accuracy of the quadrature rule.

**[1]**T. S. Bromwich,*An Introduction to the Theory of Infinite Series*, Macmillan, New York, 1966.**[2]**G. Debalbine & J. N. Franklin, "The calculation of Fourier Integrals,"*Math. Comp.*, v. 20, 1966, pp. 570-589. MR**0203976 (34:3823)****[3]**L. N. Filon, "On a quadrature formula for trigonometric integrals,"*Proc. Roy. Soc. Edinburgh*, v. 49, 1929, pp. 38-47.**[4]**M. Murwitz, Jr. & P. F. Zweifel, "Numerical quadrature of Fourier transform integrals,"*MTAC*, v. 10, 1956, pp. 140-149. MR**0080994 (18:337h)****[5]**V. I. Krylov & N. S. Skoblya,*Handbook of Numerical Inversion of Laplace Transforms*, Israel Program for Sci. Transl., Jerusalem, 1969. MR**0391481 (52:12302)****[6]**Y. L. Luke, "On the computation of oscillatory integrals,"*Proc. Cambridge Philos. Soc.*, v. 50, 1954, pp. 269-277. MR**0062518 (15:992b)****[7]**M. K. Miller & W. T. Guy, Jr., "Numerical inversion of the Laplace transform by use of Jacobi polynomials,"*SIAM J. Numer. Anal.*, v. 3, 1966, pp. 624-635. MR**0212995 (35:3860)****[8]**F. W. J. Olver,*Introduction to Asymptotics and Special Functions*, Academic Press, New York, 1974. MR**0435697 (55:8655)****[9]**M. E. Salzer, "Orthogonal polynomials arising in the numerical evaluations of inverse Laplace transforms,"*MTAC*, v. 9, 1955, pp. 164-177. MR**0078498 (17:1203d)****[10]**F. Stenger, "Integration rules via the trapezoid formula,"*J. Inst. Math. Appl.*, v. 12, 1973, pp. 103-114.**[11]**F. Stenger, "Numerical methods based on Whittaker cardinal, or sinc functions,"*SIAM Rev.*, v. 23, 1981, pp. 165-224. MR**618638 (83g:65027)****[12]**A. J. van de Vooren & M. J. van Linde, "Numerical calculation of integrals with strongly oscillating integrands,"*Math. Comp.*, v. 20, 1966, pp. 232-245. MR**0192644 (33:869)****[13]**G. Walter & D. Schultz, "Some eigenfunction methods for computing a numerical Fourier transform,"*J. Inst. Math. Appl.*, v. 18, 1976, pp. 279-293. MR**0455505 (56:13743)****[14]**M. Weber, "Numerical computation of the Fourier transform using Laguerre functions and the fast Fourier transform,"*Numer. Math.*, v. 36, 1981, pp. 197-209. MR**611492 (82c:65095)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65D30

Retrieve articles in all journals with MSC: 65D30

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1983-0701627-8

Article copyright:
© Copyright 1983
American Mathematical Society