Parameters for integrating periodic functions of several variables

Author:
Seymour Haber

Journal:
Math. Comp. **41** (1983), 115-129

MSC:
Primary 65D32; Secondary 41A55

DOI:
https://doi.org/10.1090/S0025-5718-1983-0701628-X

MathSciNet review:
701628

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A number-theoretical method for numerical integration of periodic functions of several variables was developed some years ago. This paper presents lists of numerical parameters to be used in implementing that method. The parameters define quadrature formulas for functions of 2, 3, ..., 8 variables; error bounds for those formulas are also tabulated. The derivation of the parameters and error bounds is described.

**[1]**N. S. Bahvalov, "On approximate calculation of multiple integrals,"*Vestnik Moskov. Univ. Mat. Mekh. Astronom. Fiz. Khim.*, v. 4, 1959, pp. 3-18. (Russian) MR**0115275 (22:6077)****[2]**F. Benford, "The law of anomalous numbers,"*Proc. Amer. Philos. Soc.*, v. 78, 1938, pp. 551-572.**[3]**R. I. Cukier, C. M. Fortuin, K. E. Shuler, A. G. Petschek & J. H. Schaibly, "Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients I. Theory,"*J. Chem. Phys.*, v. 59, 1973, pp. 3873-3878.**[4]**J. P. Daudey, S. Dines & R. Savinelli, "Numerical integration techniques for quantum chemistry,"*Theoret. Chim. Acta*, v. 37, 1975, pp. 275-283. MR**0446241 (56:4569)****[5]**S. Haber, "Numerical evaluation of multiple integrals,"*SIAM Rev.*, v. 12, 1970, pp. 481-526. MR**0285119 (44:2342)****[6]**S. Haber, "Experiments on optimal coefficients,"*Applications of Number Theory to Numerical Analysis*, S. K. Zaremba, Ed., Academic Press, New York, 1972, pp. 11-37. MR**0391479 (52:12300)****[7]**S. Haber, "A number-theoretic problem in numerical approximation of integrals,"*Approximation Theory*III, E. W. Cheney, Ed., Academic Press, New York, 1980, pp. 473-480. MR**602754 (82e:65027)****[8]**E. Hlawka, "Zur Angenaherten Berechnung Mehrfacher Integrale,"*Monatsh. Math.*, v. 66, 1962, pp. 140-151. MR**0143329 (26:888)****[9]**E. Hlawka, "Uniform distribution modulo 1 and numerical analysis,"*Compositio Math.*, v. 16, 1964, pp. 92-105. MR**0175278 (30:5463)****[10]**L. K. Hua & Y. Wang,*Applications of Number Theory to Numerical Analysis*, Springer-Verlag, New York and Science Press, Beijing, China, 1981. MR**617192 (83g:10034)****[11]**P. Keast,*Multi-Dimensional Quadrature Formulae*, Tech. Rep. No. 40, Department of Computer Science and Scarborough College, University of Toronto, February 1972.**[12]**P. Keast, "Optimal parameters for multi-dimensional integration,"*SIAM J. Numer. Anal.*, v. 10, 1973, pp. 831-838. MR**0353636 (50:6119)****[13]**N. M. Korobov, "On approximate calculation of multiple integrals,"*Dokl. Akad. Nauk SSSR*, v. 124, 1959, pp. 1207-1210. (Russian) MR**0104086 (21:2848)****[14]**N. M. Korobov,*Number-Theoretic Methods of Approximate Analysis*, Fizmatgiz, Moscow, 1963. (Russian)**[15]**N. M. Korobov, "Some problems in the theory of Diophantine approximation,"*Uspekhi Mat. Nauk*, v. 22, 1967, pp. 83-108 =*Russian Math. Surveys*, v. 22, 1967, pp. 80-108.**[16]**D. Maisonneuve, "Recherche et utilisation des "bons treillis." Programmation et resultats numeriques,"*Application of Number Theory to Numerical Analysis*, S. K. Zaremba, Ed., Academic Press, New York, 1972, pp. 121-201. MR**0343529 (49:8270)****[17]**H. Niederreiter, "Existence of good lattice points in the sense of Hlawka,"*Monatsh. Math.*, v. 86, 1978, pp. 203-219. MR**517026 (80e:10039)****[18]**H. Niederreiter, "Quasi-Monte Carlo methods and pseudo-random numbers,"*Bull. Amer. Math. Soc.*, v. 84, 1978, pp. 957-1041. MR**508447 (80d:65016)****[19]**A. I. Saltykov, "Tables for computing multiple integrals by the method of optimal coefficients,"*Zh. Vychisl. Mat. i Mat. Fiz.*, v. 3, 1963, pp. 181-186; English transl.,*U.S.S.R. Comput. Math. and Math. Phys.*, v. 3, 1963, pp. 235-242. MR**0150976 (27:962)****[20]**I. F. Šarygin, "A lower estimate for the error of quadrature formulas for certain classes of functions,"*Zh. Vychisl. Mat. i Mat. Fiz.*, v. 3, 1963, pp. 370-376; English transl.,*U.S.S.R. Comput. Math. and Math. Phys.*, v. 3, 1963, pp. 489-497. MR**0150952 (27:938)****[21]**K. Zakrzewska, J. Dudek & N. Nazarewicz, "A numerical calculation of multi-dimensional integrals,"*Comput. Phys. Commun.*, v. 14, 1978, pp. 299-309.**[22]**S. K. Zaremba, "Good lattice points, discrepancy, and numerical integration,"*Ann. Mat. Pura Appl.*, v. 73, 1966, pp. 293-317. MR**0218018 (36:1107)****[23]**S. K. Zaremba, "Good lattice points modulo composite numbers,"*Monatsh. Math.*, v. 78, 1974, pp. 446-460. MR**0371845 (51:8062)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65D32,
41A55

Retrieve articles in all journals with MSC: 65D32, 41A55

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1983-0701628-X

Article copyright:
© Copyright 1983
American Mathematical Society