On smooth multivariate spline functions

Authors:
Charles K. Chui and Ren Hong Wang

Journal:
Math. Comp. **41** (1983), 131-142

MSC:
Primary 41A15; Secondary 41A63

DOI:
https://doi.org/10.1090/S0025-5718-1983-0701629-1

MathSciNet review:
701629

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper the dimensions of bivariate spline spaces with simple cross-cut grid partitions are determined and expressions of their basis functions are given. Consequently, the closures of these spaces over all partitions of the same type can be determined. A somewhat more detailed study on bivariate splines with rectangular grid partitions is included. The results in this paper can be applied to problems on interpolation and approximation by bivariate spline functions.

**[1]**R. E. Barnhill, G. Birkhoff, and W. J. Gordon,*Smooth interpolation in triangles*, J. Approximation Theory**8**(1973), 114–128. Collection of articles dedicated to Isaac Jacob Schoenberg on his 70th birthday, II. MR**0368382****[2]**R. K. Beatson,*Convex approximation by splines*, SIAM J. Math. Anal.**12**(1981), no. 4, 549–559. MR**617714**, https://doi.org/10.1137/0512048**[3]**Garrett Birkhoff and Henry L. Garabedian,*Smooth surface interpolation*, J. Math. and Phys.**39**(1960), 258–268. MR**0119387****[4]**Carl de Boor,*On calculating with 𝐵-splines*, J. Approximation Theory**6**(1972), 50–62. Collection of articles dedicated to J. L. Walsh on his 75th birthday, V (Proc. Internat. Conf. Approximation Theory, Related Topics and their Applications, Univ. Maryland, College Park, Md., 1970). MR**0338617****[5]**C. de Boor, "Splines as linear combination of*B*-splines," in*Approximation Theory*II (G. G. Lorentz, C. K. Chui, L. L. Schumaker, Eds.), Academic Press, New York, 1976, pp. 1-47.**[6]**Carl de Boor,*A practical guide to splines*, Applied Mathematical Sciences, vol. 27, Springer-Verlag, New York-Berlin, 1978. MR**507062****[7]**C. de Boor & R. DeVore, "Approximation by smooth multivariate splines." (In manuscript.)**[8]**C. K. Chui, P. W. Smith, and J. D. Ward,*Degree of 𝐿_{𝑝} approximation by monotone splines*, SIAM J. Math. Anal.**11**(1980), no. 3, 436–447. MR**572194**, https://doi.org/10.1137/0511041**[9]**C. K. Chui, P. W. Smith, and J. D. Ward,*Monotone approximation by spline functions*, Quantitative approximation (Proc. Internat. Sympos., Bonn, 1979) Academic Press, New York-London, 1980, pp. 81–98. MR**588172****[10]**Charles K. Chui and Ren Hong Wang,*Bases of bivariate spline spaces with cross-cut grid partitions*, J. Math. Res. Exposition**2**(1982), no. 1, 1–3. MR**658038****[11]**S. A. Coons, "Surface patches and*B*-spline curves," in*Computer Aided Geometric Design*(R. E. Barnhill and R. F. Riesenfeld, Eds.), Academic Press, New York, 1974.**[12]**Wolfgang Dahmen,*On multivariate 𝐵-splines*, SIAM J. Numer. Anal.**17**(1980), no. 2, 179–191. MR**567267**, https://doi.org/10.1137/0717017**[13]**W. Dahmen, R. DeVore, and K. Scherer,*Multidimensional spline approximation*, SIAM J. Numer. Anal.**17**(1980), no. 3, 380–402. MR**581486**, https://doi.org/10.1137/0717033**[14]**Wolfgang Dahmen and Charles A. Micchelli,*On limits of multivariate 𝐵-splines*, J. Analyse Math.**39**(1981), 256–278. MR**632464**, https://doi.org/10.1007/BF02803338**[15]**Ronald A. DeVore,*Monotone approximation by splines*, SIAM J. Math. Anal.**8**(1977), no. 5, 891–905. MR**0510725**, https://doi.org/10.1137/0508068**[16]**Todd Dupont and Ridgway Scott,*Polynomial approximation of functions in Sobolev spaces*, Math. Comp.**34**(1980), no. 150, 441–463. MR**559195**, https://doi.org/10.1090/S0025-5718-1980-0559195-7**[17]**William J. Gordon,*Blending-function methods of bivariate and multivariate interpolation and approximation*, SIAM J. Numer. Anal.**8**(1971), 158–177. MR**0282498**, https://doi.org/10.1137/0708019**[18]**C. A. Hall,*Bicubic interpolation over triangles*, J. Math. Mech.**19**(1969/1970), 1–11. MR**0245211****[19]**Charles A. Micchelli,*A constructive approach to Kergin interpolation in 𝑅^{𝑘}: multivariate 𝐵-splines and Lagrange interpolation*, Rocky Mountain J. Math.**10**(1980), no. 3, 485–497. MR**590212**, https://doi.org/10.1216/RMJ-1980-10-3-485**[20]**Charles A. Micchelli,*On a numerically efficient method for computing multivariate 𝐵-splines*, Multivariate approximation theory (Proc. Conf., Math. Res. Inst., Oberwolfach, 1979) Internat. Ser. Numer. Math., vol. 51, Birkhäuser, Basel-Boston, Mass., 1979, pp. 211–248. MR**560673****[21]**M. J. Munteanu and L. L. Schumaker,*Direct and inverse theorems for multidimensional spline approximation*, Indiana Univ. Math. J.**23**(1973/74), 461–470. MR**0338643**, https://doi.org/10.1512/iumj.1973.23.23040**[22]**I. J. Schoenberg, "Contributions to the problem of approximation of equidistant data by analytic functions,"*Quart. Appl. Math.*, v. 4, 1946, pp. 45-99, 112-141.**[23]**Martin H. Schultz,*Spline analysis*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1973. Prentice-Hall Series in Automatic Computation. MR**0362832****[24]**Larry L. Schumaker,*Fitting surfaces to scattered data*, Approximation theory, II (Proc. Internat. Sympos., Univ. Texas, Austin, Tex., 1976) Academic Press, New York, 1976, pp. 203–268. MR**0426369****[25]**Larry L. Schumaker,*On the dimension of spaces of piecewise polynomials in two variables*, Multivariate approximation theory (Proc. Conf., Math. Res. Inst., Oberwolfach, 1979) Internat. Ser. Numer. Math., vol. 51, Birkhäuser, Basel-Boston, Mass., 1979, pp. 396–412. MR**560683****[26]**Gilbert Strang,*The dimension of piecewise polynomial spaces, and one-sided approximation*, Conference on the Numerical Solution of Differential Equations (Univ. Dundee, Dundee, 1973) Springer, Berlin, 1974, pp. 144–152. Lecture Notes in Math., Vol. 363. MR**0430621****[27]**Gilbert Strang,*Piecewise polynomials and the finite element method*, Bull. Amer. Math. Soc.**79**(1973), 1128–1137. MR**0327060**, https://doi.org/10.1090/S0002-9904-1973-13351-8**[28]**Robert J. Walker,*Algebraic Curves*, Princeton Mathematical Series, vol. 13, Princeton University Press, Princeton, N. J., 1950. MR**0033083****[29]**Ren Hong Wang,*Structure of multivariate splines, and interpolation*, Acta Math. Sinica**18**(1975), no. 2, 91–106 (Chinese). MR**0454458****[30]**Ren Hong Wang,*On the analysis of multivariate splines in the case of arbitrary partition*, Sci. Sinica (1979), 215–226 (Chinese, with English summary). MR**662201****[31]**Ren Hong Wang,*On the analysis of multivariate splines in the case of arbitrary partition. II. The space form*, Numer. Math. J. Chinese Univ.**2**(1980), no. 1, 78–81 (Chinese, with English summary). MR**594890****[32]**R. H. Wang, S. Z. Liang & Y. S. Chou,*Approximation of Functions of Several Variables*(in Chinese), Science Press, Peking. (To appear.)

Retrieve articles in *Mathematics of Computation*
with MSC:
41A15,
41A63

Retrieve articles in all journals with MSC: 41A15, 41A63

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1983-0701629-1

Keywords:
Multivariate spline functions,
total degree,
*B*-splines,
conformality condition,
basis,
cross-cuts

Article copyright:
© Copyright 1983
American Mathematical Society