Factoring large numbers with a quadratic sieve

Author:
Joseph L. Gerver

Journal:
Math. Comp. **41** (1983), 287-294

MSC:
Primary 11Y05; Secondary 11-04, 11N35

DOI:
https://doi.org/10.1090/S0025-5718-1983-0701639-4

MathSciNet review:
701639

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The quadratic sieve algorithm was used to factor a 47-digit number into primes. A comparison with Wagstaff's results using the continued fraction early abort algorithm suggests that QS should be faster than CFEA when the number being factored exceeds 60 digits (plus or minus ten or more digits, depending on details of the hardware and software).

**[1]**J. Brillhart, D. H. Lehmer, J. L. Selfridge, B. Tuckerman & S. S. Wagstaff, Jr., "Factorizations of up to high powers." (To appear).**[2]**E. R. Canfield, P. Erdos & C. Pomerance, "On a problem of Oppenheim concerning 'Factorisatio Numerorum',"*J. Number Theory.*(To appear.) MR**712964 (85j:11012)****[3]**D. Coppersmith & S. Winograd, "On the asymptotic complexity of matrix multiplication,"*SIAM J. Comput.*(To appear.) MR**664715 (83j:68047b)****[4]**J. D. Dixon, "Asymptotically fast factorization of integers,"*Math. Comp.*, v. 36, 1981, pp. 255-260. MR**595059 (82a:10010)****[5]**D. H. Lehmer, "Computer technology applied to the theory of numbers," in*Studies in Number Theory*(W.J. LeVeque, ed.), Math. Assoc. Amer., 1969,pp. 117-151. MR**0246815 (40:84)****[6]**M. A. Morrison & J. Brillhart, "A method of factoring and the factorization of ,"*Math. Comp.*, v. 29, 1975, pp. 183-205. MR**0371800 (51:8017)****[7]**C. Pomerance, "Analysis and comparison of some factoring algorithms," in*Computational Methods in Number Theory*(H. W. Lenstra, Jr. and R. Tijdeman, eds.), Math. Centrum, Amsterdam. (To appear.) MR**700260 (84i:10005)****[8]**C. P. Schnorr, private correspondence dated 1982 (communicated to the author by C. Pomerance).**[9]**S. S. Wagstaff, Jr., private correspondence dated 1981-1982.**[10]**M. C. Wunderlich, "A running time analysis of Brillhart's continued fraction factoring method," in*Number Theory Carbondale*1979 (M. B. Nathanson, ed.), Lecture Notes in Math., Vol. 751, Springer-Verlag, 1979, pp. 328-342. MR**564939 (81f:10011)**

Retrieve articles in *Mathematics of Computation*
with MSC:
11Y05,
11-04,
11N35

Retrieve articles in all journals with MSC: 11Y05, 11-04, 11N35

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1983-0701639-4

Article copyright:
© Copyright 1983
American Mathematical Society