Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Mathematics of Computation
Mathematics of Computation
ISSN 1088-6842(online) ISSN 0025-5718(print)

 

On the asymptotic convergence of collocation methods


Authors: Douglas N. Arnold and Wolfgang L. Wendland
Journal: Math. Comp. 41 (1983), 349-381
MSC: Primary 65N35; Secondary 65L10, 65L60, 65N30
MathSciNet review: 717691
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove quasioptimal and optimal order estimates in various Sobolev norms for the approximation of linear strongly elliptic pseudodifferential equations in one independent variable by the method of nodal collocation by odd degree polynomial splines. The analysis pertains in particular to many of the boundary element methods used for numerical computation in engineering applications. Equations to which the analysis is applied include Fredholm integral equations of the second kind, certain first kind Fredholm equations, singular integral equations involving Cauchy kernels, a variety of integro-differential equations, and two-point boundary value problems for ordinary differential equations. The error analysis is based on an equivalence which we establish between the collocation methods and certain nonstandard Galerkin methods. We compare the collocation method with a standard Galerkin method using splines of the same degree, showing that the Galerkin method is quasioptimal in a Sobolev space of lower index and furnishes optimal order approximation for a range of Sobolev indices containing and extending below that for the collocation method, and so the standard Galerkin method achieves higher rates of convergence.


References [Enhancements On Off] (What's this?)

  • [1] M. S. Abou El-Seoud, Numerische Behandlung von schwach singulären Integralgleichungen erster Art, Doctoral Dissertation, Technische Hochschule Darmstadt, Germany, 1979.
  • [2] M. S. Abou El-Seoud, Kollokationsmethode für schwach singuläre Integralgleichungen erster Art, Z. Angew. Math. Mech. 59 (1979), no. 3, T45–T47 (German). Vorträge der Wissenschaftlichen Jahrestagung der Gesellschaft für Angewandte Mathematik und Mechanik, Teil I (Brussels, 1978). MR 533975 (80h:65107)
  • [3] M. S. Agranovič, Elliptic singular integro-differential operators, Uspehi Mat. Nauk 20 (1965), no. 5 (125), 3–120 (Russian). MR 0198017 (33 #6176)
  • [4] John F. Ahner and George C. Hsiao, On the two-dimensional exterior boundary-value problems of elasticity, SIAM J. Appl. Math. 31 (1976), no. 4, 677–685. MR 0426573 (54 #14514)
  • [5] M. A. Aleksidze, Reshenie granichnykh zadach metodom razlozheniya po neortogonalnym funktsiyam, “Nauka”, Moscow, 1978 (Russian). MR 527813 (80h:65090)
  • [6] Philip M. Anselone, Collectively compact operator approximation theory and applications to integral equations, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1971. With an appendix by Joel Davis; Prentice-Hall Series in Automatic Computation. MR 0443383 (56 #1753)
  • [7] H. Antes, Die Splineinterpolation zur Lösung von Integralgleichungen und ihre Anwendung bei der Berechnung von Spannungen in krummlinig berandelen Scheiben, Doctoral Dissertation R-W-TH Aachen, Germany, 1970.
  • [8] Heinz Antes, Splinefunktionen bei der Lösung von Integralgleichungen, Numer. Math. 19 (1972), 116–126 (German, with English summary). MR 0303773 (46 #2909)
  • [9] D. Archer, Some Collocation Methods for Differential Equations, Ph.D. Thesis, Rice University, Houston, 1973.
  • [10] David Archer, An 𝑂(ℎ⁴) cubic spline collocation method for quasilinear parabolic equations, SIAM J. Numer. Anal. 14 (1977), no. 4, 620–637. MR 0461934 (57 #1916)
  • [11] D. W. Arthur, The solution of Fredholm integral equations using spline functions, J. Inst. Math. Appl. 11 (1973), 121–129. MR 0334557 (48 #12876)
  • [12] Kendall E. Atkinson, A survey of numerical methods for the solution of Fredholm integral equations of the second kind, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1976. MR 0483585 (58 #3577)
  • [13] F. V. Atkinson, On relatively regular operators, Acta Sci. Math. Szeged 15 (1953), 38–56. MR 0056835 (15,134e)
  • [14] Jean-Pierre Aubin, Approximation of elliptic boundary-value problems, Wiley-Interscience [A division of John Wiley & Sons, Inc.], New York-London-Sydney, 1972. Pure and Applied Mathematics, Vol. XXVI. MR 0478662 (57 #18139)
  • [15] Ivo Babuška and A. K. Aziz, Survey lectures on the mathematical foundations of the finite element method, The mathematical foundations of the finite element method with applications to partial differential equations (Proc. Sympos., Univ. Maryland, Baltimore, Md., 1972) Academic Press, New York, 1972, pp. 1–359. With the collaboration of G. Fix and R. B. Kellogg. MR 0421106 (54 #9111)
  • [16] Ivo Babuška, Error-bounds for finite element method, Numer. Math. 16 (1970/1971), 322–333. MR 0288971 (44 #6166)
  • [17] Christopher T. H. Baker, The numerical treatment of integral equations, Clarendon Press, Oxford, 1977. Monographs on Numerical Analysis. MR 0467215 (57 #7079)
  • [18] P. K. Banerjee and R. Butterfield (eds.), Developments in boundary element methods. 1, Applied Science Publishers, Ltd., Barking, 1979. Developments Series. MR 624798 (82f:65005)
  • [19] Richard Bellman, Introduction to matrix analysis, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1960. MR 0122820 (23 #A153)
  • [20] L. Bolteus & O. Tullberg, "BEMSTAT--A new type of boundary element program for two-dimensional elasticity problems", in Boundary Element Methods (C. A. Brebbia, ed.), Springer-Verlag, Berlin and New York, 1981, pp. 518-537.
  • [21] C. de Boor, The Method of Projections as Applied to the Numerical Solution of Two Point Boundary Value Problems Using Cubic Splines, Ph.D. Thesis, University of Michigan, Ann Arbor, Mich., 1966.
  • [22] Carl de Boor and Blâir Swartz, Collocation at Gaussian points, SIAM J. Numer. Anal. 10 (1973), 582–606. MR 0373328 (51 #9528)
  • [23] James H. Bramble and Ridgway Scott, Simultaneous approximation in scales of Banach spaces, Math. Comp. 32 (1978), no. 144, 947–954. MR 501990 (80a:65222), http://dx.doi.org/10.1090/S0025-5718-1978-0501990-5
  • [24] C. A. Brebbia, The boundary element method for engineers, Halsted Press [John Wiley & Sons], New York, 1978. MR 0502715 (58 #19652)
  • [25] Carlos A. Brebbia (ed.), Boundary element methods, Butterworth, London-Boston, Mass., 1980. MR 643244 (83e:65009)
  • [26] C. A. Brebbia (ed.), Boundary element methods, CML Publications, Springer-Verlag, Berlin, 1981. MR 732950 (85h:73001)
  • [27] C. A. Brebbia (ed.), Boundary element methods, CML Publications, Springer-Verlag, Berlin, 1981. MR 732950 (85h:73001)
  • [28] Gerhard Bruhn and Wolfgang Wendland, Über die näherungsweise Lösung von linearen Funktionalgleichungen, Funktionalanalysis, Approximationstheorie, Numerische Mathematik (Oberwolfach, 1965) Birkhäuser, Basel, 1967, pp. 136–164 (German). MR 0225203 (37 #797)
  • [29] Jean Céa, Approximation variationnelle des problèmes aux limites, Ann. Inst. Fourier (Grenoble) 14 (1964), no. fasc. 2, 345–444 (French). MR 0174846 (30 #5037)
  • [30] G. A. Chandler, Superconvergence of Numerical Solutions to Second Kind Integral Equations, Ph.D. Thesis, Australian National University, 1979.
  • [31] S. Christiansen, Condition number of matrices derived from two classes of integral equations, Math. Methods Appl. Sci. 3 (1981), no. 3, 364–392. MR 657303 (83e:65203), http://dx.doi.org/10.1002/mma.1670030126
  • [32] S. Christiansen & E. B. Hansen, "A direct integral equation method for computing the hoop stress in plane isotropic sheets," J. Elasticity, v. 5, 1975, pp. 1-14.
  • [33] J. Albrecht and L. Collatz (eds.), Numerische Behandlung von Differentialgleichungen. Band 3, Internationale Schriftenreihe zur Numerischen Mathematik [International Series of Numerical Mathematics], vol. 56, Birkhäuser Verlag, Basel, 1981 (German). MR 784038 (86b:65003)
  • [34] T. A. Cruse, "Application of the boundary-integral equation solution method in solid mechanics," in Variational Methods in Engineering, Dept. Civil Eng., Southampton Univ., England, 1972, pp. 9.1-9.29.
  • [35] J. W. Daniel and B. K. Swartz, Extrapolated collocation for two-point boundary-value problems using cubic splines, J. Inst. Math. Appl. 16 (1975), no. 2, 161–174. MR 0391519 (52 #12340)
  • [36] Julio César Díaz, A collocation-Galerkin method for the two point boundary value problem using continuous piecewise polynomial spaces, SIAM J. Numer. Anal. 14 (1977), no. 5, 844–858. MR 0483480 (58 #3481)
  • [37] Gaetano Fichera, Linear elliptic equations of higher order in two independent variables and singular integral equations, with applications to anistropic inhomogeneous elasticity, Partical differential equations and continuum mechanics, Univ. of Wisconsin Press, Madison, Wis., 1961, pp. 55–80. MR 0156084 (27 #6016)
  • [38] P. J. T. Filippi, "Layer potentials and acoustic diffraction," J. Sound Vibration, v. 54, 1977, pp. 473-500.
  • [39] Gilbert Strang and George J. Fix, An analysis of the finite element method, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1973. Prentice-Hall Series in Automatic Computation. MR 0443377 (56 #1747)
  • [40] Dieter Gaier, Integralgleichungen erster Art und konforme Abbildung, Math. Z. 147 (1976), no. 2, 113–129. MR 0396926 (53 #786)
  • [41] J. Giroire and J.-C. Nédélec, Numerical solution of an exterior Neumann problem using a double layer potential, Math. Comp. 32 (1978), no. 144, 973–990. MR 0495015 (58 #13783), http://dx.doi.org/10.1090/S0025-5718-1978-0495015-8
  • [42] Günther Hämmerlin and Larry L. Schumaker, Procedures for kernel approximation and solution of Fredholm integral equations of the second kind, Numer. Math. 34 (1980), no. 2, 125–141. MR 566677 (81a:65122), http://dx.doi.org/10.1007/BF01396055
  • [43] Erik B. Hansen, Numerical solution of integro-differential and singular integral equations for plate bending problems, J. Elasticity 6 (1976), no. 1, 39–56 (English, with German summary). MR 0483943 (58 #3894)
  • [44] E. B. Hansen, "An integral equation method for stress concentration problems in cylindrical shells," J. Elasticity, v. 7, 1977, pp. 283-305.
  • [45] John K. Hayes, David K. Kahaner, and Richard G. Kellner, An improved method for numerical conformal mapping, Math. Comp. 26 (1972), 327–334; suppl., ibid. 26 (1972), no. 118, loose microfiche suppl. A1–B14. MR 0301176 (46 #334), http://dx.doi.org/10.1090/S0025-5718-1972-0301176-8
  • [46] Hans-Peter Helfrich, Simultaneous approximation in negative norms of arbitrary order, RAIRO Anal. Numér. 15 (1981), no. 3, 231–235 (English, with French summary). MR 631677 (82k:65054)
  • [47] Stefan Hildebrandt and Ernst Wienholtz, Constructive proofs of representation theorems in separable Hilbert space, Comm. Pure Appl. Math. 17 (1964), 369–373. MR 0166608 (29 #3881)
  • [48] H.-P. Hoidn, Die Kollokationsmethode angewandt auf die Symmsche Integralgleichung, Doctoral Dissertation, ETH Zürich, Switzerland, 1983.
  • [49] Elias Houstis, A collocation method for systems of nonlinear ordinary differential equations, J. Math. Anal. Appl. 62 (1978), no. 1, 24–37. MR 0488785 (58 #8295)
  • [50] G. C. Hsiao, P. Kopp, and W. L. Wendland, A Galerkin collocation method for some integral equations of the first kind, Computing 25 (1980), no. 2, 89–130 (English, with German summary). MR 620387 (83e:65210), http://dx.doi.org/10.1007/BF02259638
  • [51] G. C. Hsiao, P. Kopp & W. L. Wendland, "Some applications of a Galerkin-collocation method for integral equations of the first kind." (To appear.) Preprint 768, Fachbereich Mathematik, Technische Hochschule Darmstadt, Germany, 1983.
  • [52] George Hsiao and R. C. MacCamy, Solution of boundary value problems by integral equations of the first kind, SIAM Rev. 15 (1973), 687–705. MR 0324242 (48 #2594)
  • [53] George C. Hsiao and Wolfgang L. Wendland, A finite element method for some integral equations of the first kind, J. Math. Anal. Appl. 58 (1977), no. 3, 449–481. MR 0461963 (57 #1945)
  • [54] G. C. Hsiao and W. L. Wendland, The Aubin-Nitsche lemma for integral equations, J. Integral Equations 3 (1981), no. 4, 299–315. MR 634453 (83j:45019)
  • [55] G. C. Hsiao & W. L. Wendland, "Super approximation for boundary integral methods," in Advances in Computer Methods for Partial Differential Equations--IV (R. Vichnevetsky & R. S. Stepleman, eds.), IMACS Symp., Dept. of Comput. Sci., Rutgers Univ., New Brunswick, N.J., 1981, pp. 200-205
  • [56] M. A. Jaswon and G. T. Symm, Integral equation methods in potential theory and elastostatics, Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1977. Computational Mathematics and Applications. MR 0499236 (58 #17147)
  • [57] Tosio Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. MR 0203473 (34 #3324)
  • [58] J. J. Kohn and L. Nirenberg, An algebra of pseudo-differential operators, Comm. Pure Appl. Math. 18 (1965), 269–305. MR 0176362 (31 #636)
  • [59] A. Krawietz, Energetische Behandlung des Singularitätenverfahrens, Doctoral Dissertation, Technical University, Berlin, Germany, 1972.
  • [60] G. Kuhn & W. Möhrmann, "Boundary element methods in elastostatics: Theory and applications," Appl. Math. Modelling, v. 7, 1983, pp. 97-105.
  • [61] W. D. Kupradse, Randwertaufgaben der Schwingungstheorie und Integralgleichungen, Hochschulbücher für Mathematik, Band 21, VEB Deutscher Verlag der Wissenschaften, Berlin, 1956 (German). MR 0079720 (18,135c)
  • [62] V. D. Kupradze, Potential methods in the theory of elasticity, Translated from the Russian by H. Gutfreund. Translation edited by I. Meroz, Israel Program for Scientific Translations, Jerusalem; Daniel Davey &\ Co., Inc., New York, 1965. MR 0223128 (36 #6177)
  • [63] V. D. Kupradze, T. G. Gegelia, M. O. Basheleĭshvili, and T. V. Burchuladze, Three-dimensional problems of the mathematical theory of elasticity and thermoelasticity, Translated from the second Russian edition, North-Holland Series in Applied Mathematics and Mechanics, vol. 25, North-Holland Publishing Co., Amsterdam-New York, 1979. Edited by V. D. Kupradze. MR 530377 (80h:73002)
  • [64] U. Lamp, T. Schleicher, E. Stephan & W. L. Wendland, "The boundary integral method for a plane mixed boundary value problem," in Advances in Computer Methods for Partial Differential Equations--IV (R. Vichnevetsky & R. S. Stepleman, eds.), IMACS Symp., Dept. of Comput. Sci., Rutgers Univ., New Brunswick, N.J., 1981, pp. 222-229.
  • [65] U. Lamp, T. Schleicher, E. Stephan, and W. L. Wendland, Galerkin collocation for an improved boundary element method for a plane mixed boundary value problem, Computing 33 (1984), no. 3-4, 269–296 (English, with German summary). MR 773929 (86k:65112), http://dx.doi.org/10.1007/BF02242273
  • [66] Thomas R. Lucas and George W. Reddien Jr., Some collocation methods for nonlinear boundary value problems, SIAM J. Numer. Anal. 9 (1972), 341–356. MR 0309333 (46 #8443)
  • [67] Erich Martensen, Berechnung der Druckverteilung an Gitterprofilen in ebener Potentialströmung mit einer Fredholmschen Integralgleichung, Arch. Rational Mech. Anal. 3 (1959), 235–270 (1959) (German). MR 0114431 (22 #5252)
  • [68] G. Mehlhorn, Ein Beitrag zum Kipp-Problem bei Stahlbeton- und Spannbetonträgern, Doctoral Dissertation, Dl7, Technische Hochschule Darmstadt, Germany, 1970.
  • [69] S. G. Michlin & S. Prössdorf, Singuläre Integraloperatoren, Akademie-Verlag, Berlin, 1980.
  • [70] N. I. Muskhelishvili, Some basic problems of the mathematical theory of elasticity. Fundamental equations, plane theory of elasticity, torsion and bending, Translated from the Russian by J. R. M. Radok, P. Noordhoff, Ltd., Groningen, 1963. MR 0176648 (31 #920)
  • [71] N. I. Muskhelishvili, Singular integral equations, Wolters-Noordhoff Publishing, Groningen, 1972. Boundary problems of functions theory and their applications to mathematical physics; Revised translation from the Russian, edited by J. R. M. Radok; Reprinted. MR 0355494 (50 #7968)
  • [72] G. G. Mustoe & I. C. Mathews, "Direct boundary integral methods, point collocation and variational procedures." (To appear.)
  • [73] J. C. Nedelec, Approximation des Equations Intégrales en Mecanique et en Physique, Lecture Notes, Centre de Mathématiques Appliquées, Ecole Polytechnique, Palaiseau, France, 1977.
  • [74] J. Nitsche, Zur Konvergenz von Näherungsverfahren bezüglich verschiedener Normen, Numer. Math. 15 (1970), 224–228 (German). MR 0279509 (43 #5231)
  • [75] Ben Noble, A Bibliography on: "Methods for solving integral equations," Math. Res. Center Tech. Report 1176 and 1177, Madison, Wisc., 1971.
  • [76] F. Aleixo Oliveira, Collocation and residual correction, Numer. Math. 36 (1980/81), no. 1, 27–31. MR 595804 (82a:65060), http://dx.doi.org/10.1007/BF01395986
  • [77] Richard S. Palais, Seminar on the Atiyah-Singer index theorem, With contributions by M. F. Atiyah, A. Borel, E. E. Floyd, R. T. Seeley, W. Shih and R. Solovay. Annals of Mathematics Studies, No. 57, Princeton University Press, Princeton, N.J., 1965. MR 0198494 (33 #6649)
  • [78] P. M. Prenter, A collection method for the numerical solution of integral equations, SIAM J. Numer. Anal. 10 (1973), 570–581. MR 0327064 (48 #5406)
  • [79] Siegfried Prössdorf and Bernd Silbermann, Projektionsverfahren und die näherungsweise Lösung singulärer Gleichungen, BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1977 (German). Mit einer englischen und einer russischen Zusammenfassung; Teubner-Texte zur Mathematik. MR 0494817 (58 #13602)
  • [80] S. Prössdorf and G. Schmidt, A finite element collocation method for singular integral equations, Math. Nachr. 100 (1981), 33–60. MR 632620 (82m:65127), http://dx.doi.org/10.1002/mana.19811000104
  • [81] S. Prössdorf & G. Schmidt, "A finite element collocation method for systems of singular integral equations," Preprint P-MATH-26/81, Akademie der Wissenschaften der DDR, Institut für Mathematik, DDR-1080 Berlin, Mohrenstr. 39, 1981.
  • [82] Gerard R. Richter, Superconvergence of piecewise polynomial Galerkin approximations, for Fredholm integral equations of the second kind, Numer. Math. 31 (1978/79), no. 1, 63–70. MR 508588 (80a:65273), http://dx.doi.org/10.1007/BF01396014
  • [83] Friedrich Riesz and Béla Sz.-Nagy, Vorlesungen über Funktionalanalysis, Hochschulbücher für Mathematik, Bd. 27, VEB Deutscher Verlag der Wissenschaften, Berlin, 1956 (German). Translation by Siegfried Brehmer and Brigitte Mai,. MR 0083695 (18,747e)
  • [84] F. J. Rizzo, "An integral equation approach to boundary value problems of classical elastostatics," Quart. Appl. Math., v. 25, 1967, pp. 83-95.
  • [85] M. N. Le Roux, Resolution Numérique du Problème du Potential dans le Plan par une Méthode Variationelle d'Eléments Finis, Doctoral thesis, Université de Rennes, Sér. A No. 347 ser. 38, France, 1974.
  • [86] Marie-Noëlle Le Roux, Équations intégrales pour le problème du potentiel électrique dans le plan, C. R. Acad. Sci. Paris Sér. A 278 (1974), 541–544 (French). MR 0361418 (50 #13863)
  • [87] Robert D. Russell, Collocation for systems of boundary value problems, Numer. Math. 23 (1974), 119–133. MR 0416074 (54 #4150)
  • [88] Eugen Schäfer, Fehlerabschätzungen für Eigenwertnäherungen nach der Ersatzkernmethode bei Integralgleichungen, Numer. Math. 32 (1979), no. 3, 281–290 (German, with English summary). MR 535195 (80e:65129), http://dx.doi.org/10.1007/BF01397002
  • [89] Larry L. Schumaker, Spline functions: basic theory, John Wiley & Sons, Inc., New York, 1981. Pure and Applied Mathematics; A Wiley-Interscience Publication. MR 606200 (82j:41001)
  • [90] R. Seeley, Topics in pseudo-differential operators, Pseudo-Diff. Operators (C.I.M.E., Stresa, 1968) Edizioni Cremonese, Rome, 1969, pp. 167–305. MR 0259335 (41 #3973)
  • [91] R. Shaw et al., Innovative Numerical Analysis for the Engineering Sciences, The University Press of Virginia, 1980.
  • [92] Ernst Stephan and Wolfgang Wendland, Remarks to Galerkin and least squares methods with finite elements for general elliptic problems, Ordinary and partial differential equations (Proc. Fourth Conf., Univ. Dundee, Dundee, 1976) Springer, Berlin, 1976, pp. 461–471. Lecture Notes in Math., Vol. 564. MR 0520343 (58 #25012)
  • [93] F. Stummel, Rand- und Eigenwertaufgaben in Sobolewschen Räumen, Lecture Notes in Mathematics, Vol. 102, Springer-Verlag, Berlin-New York, 1969 (German). MR 0463907 (57 #3845)
  • [94] Blair Swartz and Burton Wendroff, The relation between the Galerkin and collocation methods using smooth splines, SIAM J. Numer. Anal. 11 (1974), 994–996. MR 0362953 (50 #15391)
  • [95] George T. Symm, Numerical mappings of exterior domains, Numer. Math. 10 (1967), 437–445. MR 0220465 (36 #3525)
  • [96] I. Szabo, Höhere Technische Mechanik, Springer-Verlag, Berlin, 1956.
  • [97] François Trèves, Introduction to pseudodifferential and Fourier integral operators. Vol. 2, Plenum Press, New York-London, 1980. Fourier integral operators; The University Series in Mathematics. MR 597145 (82i:58068)
  • [98] V. V. Voronin & V. A. Cecoho, "An interpolation method for solving an integral equation of the first kind with a logarithmic singularity," Soviet Math. Dokl., v. 15, 1974, pp. 949-952.
  • [99] J. Watson, "Hermitian cubic boundary elements for plane problems of fracture mechanics," Res. Mechanica, 1981.
  • [100] Wolfgang L. Wendland, On Galerkin collocation methods for integral equations of elliptic boundary value problems, Numerical treatment of integral equations (Workshop, Math. Res. Inst., Oberwolfach, 1979) Internat. Ser. Numer. Math., vol. 53, Birkhäuser, Basel-Boston, Mass., 1980, pp. 244–275. MR 590455 (82f:65142)
  • [101] W. L. Wendland, On the asymptotic convergence of boundary integral methods, Boundary element methods (Irvine, Calif., 1981) CML Publ., Springer, Berlin, 1981, pp. 412–430. MR 732954 (85i:73024)
  • [102] W. L. Wendland, "Asymptotic convergence of boundary element methods," in Lectures on the Numerical Solution of Partial Differential Equations (I. Babuška, T.-P. Liu & J. Osborn, eds.), Lecture Notes, vol. 20, Univ. of Maryland, College Park, MD, 1981, pp. 435-528.
  • [103] W. L. Wendland, "Asymptotic accuracy and convergence," in Progress in Boundary Element Methods (C. A. Brebbia, ed.), Pentech Press, London, Plymouth, vol. 1, 1981, pp. 289-313.
  • [104] H. Werner and R. Schaback, Praktische Mathematik. II: Methoden der Analysis, Springer-Verlag, Berlin-New York, 1972. Nach Vorlesungen an der Universität Münster, herausgegeben mit Unterstützung von R. Runge und H. Arndt; Hochschultext. MR 0408187 (53 #11953)
  • [105] O. S. Zienkiewicz, The Finite Element Method, McGraw-Hill, London, 1977.
  • [106] J. Elschner & G. Schmidt, "On spline interpolation in periodic Sobolev spaces," Preprint P-MATH-01/83, Akademie der Wissenschaften der DDR, Institut für Mathematik, DDR 1080 Berlin, Mohrenstr. 39, 1983 (added in proof).

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65N35, 65L10, 65L60, 65N30

Retrieve articles in all journals with MSC: 65N35, 65L10, 65L60, 65N30


Additional Information

DOI: http://dx.doi.org/10.1090/S0025-5718-1983-0717691-6
PII: S 0025-5718(1983)0717691-6
Article copyright: © Copyright 1983 American Mathematical Society