Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

On the asymptotic convergence of collocation methods


Authors: Douglas N. Arnold and Wolfgang L. Wendland
Journal: Math. Comp. 41 (1983), 349-381
MSC: Primary 65N35; Secondary 65L10, 65L60, 65N30
DOI: https://doi.org/10.1090/S0025-5718-1983-0717691-6
MathSciNet review: 717691
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove quasioptimal and optimal order estimates in various Sobolev norms for the approximation of linear strongly elliptic pseudodifferential equations in one independent variable by the method of nodal collocation by odd degree polynomial splines. The analysis pertains in particular to many of the boundary element methods used for numerical computation in engineering applications. Equations to which the analysis is applied include Fredholm integral equations of the second kind, certain first kind Fredholm equations, singular integral equations involving Cauchy kernels, a variety of integro-differential equations, and two-point boundary value problems for ordinary differential equations. The error analysis is based on an equivalence which we establish between the collocation methods and certain nonstandard Galerkin methods. We compare the collocation method with a standard Galerkin method using splines of the same degree, showing that the Galerkin method is quasioptimal in a Sobolev space of lower index and furnishes optimal order approximation for a range of Sobolev indices containing and extending below that for the collocation method, and so the standard Galerkin method achieves higher rates of convergence.


References [Enhancements On Off] (What's this?)

  • [1] M. S. Abou El-Seoud, Numerische Behandlung von schwach singulären Integralgleichungen erster Art, Doctoral Dissertation, Technische Hochschule Darmstadt, Germany, 1979.
  • [2] M. S. Abou El-Seoud, "Kollokationsmethode für schwach singuläre Integralgleichungen erster Art," Z. Angew. Math. Mech., v. 59, 1979, pp. T45-T47. MR 533975 (80h:65107)
  • [3] M. S. Agranovich, "Elliptic singular integro-differential operators," Russian Math. Surveys. v. 20, 1965, pp. 1-122. MR 0198017 (33:6176)
  • [4] J. F. Ahner & G. C. Hsiao, "On the two-dimensional exterior boundary-value problems of elasticity," SIAM J. Appl. Math., v. 31, 1976, pp. 677-685. MR 0426573 (54:14514)
  • [5] M. A. Aleksidze, The Solution of Boundary Value Problems with the Method of the Expansion with Respect to Nonorthonormal Functions, "Nauka", Moscow, 1978. (Russian) MR 527813 (80h:65090)
  • [6] P. Anselone, Collectively Compact Operator Theory, Prentice-Hall, London, 1971. MR 0443383 (56:1753)
  • [7] H. Antes, Die Splineinterpolation zur Lösung von Integralgleichungen und ihre Anwendung bei der Berechnung von Spannungen in krummlinig berandelen Scheiben, Doctoral Dissertation R-W-TH Aachen, Germany, 1970.
  • [8] H. Antes, "Splinefunktionen bei der Lösung von Integralgleichungen," Numer. Math., v. 19, 1972, pp. 116-126. MR 0303773 (46:2909)
  • [9] D. Archer, Some Collocation Methods for Differential Equations, Ph.D. Thesis, Rice University, Houston, 1973.
  • [10] D. Archer, "An $ O({h^4})$ cubic spline collocation method for quasilinear parabolic equations," SIAM J. Numer. Anal., v. 14, 1977, pp. 620-637. MR 0461934 (57:1916)
  • [11] D. W. Arthur, "The solution of Fredholm integral equations using spline functions," J. Inst. Math. Appl., v. 11, 1973, pp. 121-129. MR 0334557 (48:12876)
  • [12] K. E. Atkinson, A Survey of Numerical Methods for the Solution of Fredholm Integral Equations of the Second Kind, SIAM, Philadelphia, Pa., 1976. MR 0483585 (58:3577)
  • [13] F. V. Atkinson, "On relatively regular operators," Acta Sci. Math. Szeged., v. 15, 1953, pp. 38-56. MR 0056835 (15:134e)
  • [14] J. P. Aubin, Approximation of Elliptic Boundary Value Problems, Wiley, New York, 1972. MR 0478662 (57:18139)
  • [15] I. Babuška & A. K. Aziz, "Survey lectures on the mathematical foundations of the finite element method," in The Mathematical Foundation of the Finite Element Method with Applications to Partial Differential Equations (A. K. Aziz, ed.), Academic Press, New York, 1972, pp. 3-359. MR 0421106 (54:9111)
  • [16] I. Babuška, "Error-bounds for finite element method," Numer. Math., v. 16, 1970, pp. 322-333. MR 0288971 (44:6166)
  • [17] C. Baker, The Numerical Treatment of Integral Equations, Clarendon Press, Oxford, 1977. MR 0467215 (57:7079)
  • [18] P. K. Banerjee & R. Butterfield (eds.), Developments in Boundary Element Methods, Appl. Science Publ., London, 1979. MR 624798 (82f:65005)
  • [19] R. Bellman, Introduction to Matrix Analysis, McGraw-Hill, New York, 1960. MR 0122820 (23:A153)
  • [20] L. Bolteus & O. Tullberg, "BEMSTAT--A new type of boundary element program for two-dimensional elasticity problems", in Boundary Element Methods (C. A. Brebbia, ed.), Springer-Verlag, Berlin and New York, 1981, pp. 518-537.
  • [21] C. de Boor, The Method of Projections as Applied to the Numerical Solution of Two Point Boundary Value Problems Using Cubic Splines, Ph.D. Thesis, University of Michigan, Ann Arbor, Mich., 1966.
  • [22] C. de Boor & B. Swartz, "Collocation at Gaussian points," SIAM J. Numer. Anal., v. 10, 1973, pp. 582-606. MR 0373328 (51:9528)
  • [23] J. H. Bramble & R. Scott, "Simultaneous approximation in scales of Banach spaces," Math. Comp., v. 32, 1978, pp. 947-954. MR 501990 (80a:65222)
  • [24] C. A. Brebbia (ed.), The Boundary Element Method for Engineers, Pentech Press, London, Plymouth, 1978. MR 0502715 (58:19652)
  • [25] C. A. Brebbia (ed.), New Developments in Boundary Element Methods, CML Publ., Southampton, 1980. MR 643244 (83e:65009)
  • [26] C. A. Brebbia (ed.), Boundary Element Methods, Springer-Verlag, Berlin and New York, 1981. MR 732950 (85h:73001)
  • [27] C. A. Brebbia (ed.), Progress in Boundary Element Methods, vol. 1 ff., Pentech Press, London, Plymouth, 1981. MR 732950 (85h:73001)
  • [28] G. Bruhn & W. Wendland, "Über die näherungsweise Lösung von linearen Funktionalgleichungen," in Funktionalanalysis, Approximationstheorie, Numerische Mathematik (L. Collatz, ed.), Internat. Ser. Numer. Math., v. 7, Birkhäuser, Basel, 1967, pp. 136-144. MR 0225203 (37:797)
  • [29] J. Céa, "Approximation variationelle des problèmes aux limites," Ann. Inst. Fourier (Grenoble), v. 14, 1964, pp. 345-444. MR 0174846 (30:5037)
  • [30] G. A. Chandler, Superconvergence of Numerical Solutions to Second Kind Integral Equations, Ph.D. Thesis, Australian National University, 1979.
  • [31] S. Christiansen, "Condition number of matrices derived from two classes of integral equations," Math. Methods Appl. Sci., v. 3, 1981, pp. 364-392. MR 657303 (83e:65203)
  • [32] S. Christiansen & E. B. Hansen, "A direct integral equation method for computing the hoop stress in plane isotropic sheets," J. Elasticity, v. 5, 1975, pp. 1-14.
  • [33] L. Collatz, The Numerical Treatment of Differential Equations, Springer-Verlag, Berlin and New York, 1966. MR 784038 (86b:65003)
  • [34] T. A. Cruse, "Application of the boundary-integral equation solution method in solid mechanics," in Variational Methods in Engineering, Dept. Civil Eng., Southampton Univ., England, 1972, pp. 9.1-9.29.
  • [35] J. W. Daniel & B. K. Swartz, "Extrapolated collocation for two-point boundary value problems using cubic splines," J. Inst. Math. Appl., v. 16, 1975, pp. 161-174. MR 0391519 (52:12340)
  • [36] J. C. Diaz, "A collocation-Galerkin method for two-point boundary value problems using piecewise polynomial spaces," SIAM J. Numer. Anal., v. 14, 1977, pp. 844-859. MR 0483480 (58:3481)
  • [37] G. Fichera, "Linear elliptic equations of higher order in two independent variables and singular integral equations," in Proc. Conf. Partial Differential Equations and Cont. Mechanics, Univ. of Wisconsin Press, 1961, pp. 55-80. MR 0156084 (27:6016)
  • [38] P. J. T. Filippi, "Layer potentials and acoustic diffraction," J. Sound Vibration, v. 54, 1977, pp. 473-500.
  • [39] G. J. Fix & G. Strang, An Analysis of the Finite Element Method, Prentice-Hall, Englewood Cliffs, N.J., 1973. MR 0443377 (56:1747)
  • [40] D. Gaier, "Integralgleichungen erster Art und konforme Abbildung," Math. Z., v. 147, 1976, pp. 113-129. MR 0396926 (53:786)
  • [41] J. Giroire & J. C. Nedelec, "Numerical solution of an exterior Neumann problem using a double layer potential," Math. Comp., v. 32, 1978, pp. 973-990. MR 0495015 (58:13783)
  • [42] G. Hämmerlin & L. L. Schumaker, "Procedures for kernel approximation and solution of Fredholm integral equations of the second kind," Numer. Math., v. 34, 1980, pp. 125-141. MR 566677 (81a:65122)
  • [43] E. B. Hansen, "Numerical solution of integro-differential and singular equations for plate bending problems," J. Elasticity, v. 6, 1976, pp. 39-56. MR 0483943 (58:3894)
  • [44] E. B. Hansen, "An integral equation method for stress concentration problems in cylindrical shells," J. Elasticity, v. 7, 1977, pp. 283-305.
  • [45] J. K. Hayes, D. K. Kahaner & R. G. Kellner, "An improved method for numerical conformal mapping," Math. Comp., v. 26, 1972, pp. 327-334. MR 0301176 (46:334)
  • [46] H. P. Helfrich, "Simultaneous approximation in negative norms of arbitrary order," RAIRO Numer. Anal., v. 15, 1981, pp. 231-235. MR 631677 (82k:65054)
  • [47] St. Hildebrandt & E. Wienholtz, "Constructive proofs of representation theorems in separable Hilbert space," Comm. Pure Appl. Math., v. 17, 1964, pp. 369-373. MR 0166608 (29:3881)
  • [48] H.-P. Hoidn, Die Kollokationsmethode angewandt auf die Symmsche Integralgleichung, Doctoral Dissertation, ETH Zürich, Switzerland, 1983.
  • [49] E. N. Houstis, "A collocation method for systems of nonlinear ordinary differential equations," J. Math. Anal. Appl., v. 62, 1978, pp. 24-37. MR 0488785 (58:8295)
  • [50] G. C. Hsiao, P. Kopp & W. L. Wendland, "A Galerkin collocation method for some integral equations of the first kind," Computing, v. 25, 1980, pp. 89-130. MR 620387 (83e:65210)
  • [51] G. C. Hsiao, P. Kopp & W. L. Wendland, "Some applications of a Galerkin-collocation method for integral equations of the first kind." (To appear.) Preprint 768, Fachbereich Mathematik, Technische Hochschule Darmstadt, Germany, 1983.
  • [52] G. C. Hsiao & R. C. MacCamy, "Solution of boundary value problems by integral equations of the first kind," SIAM Rev., v. 15, 1973, pp. 687-705. MR 0324242 (48:2594)
  • [53] G. C. Hsiao & W. L. Wendland, "A finite element method for some integral equations of the first kind," J. Math. Anal. Appl., v. 58, 1977, pp. 449-481. MR 0461963 (57:1945)
  • [54] G. C. Hsiao & W. L. Wendland, "The Aubin-Nitsche lemma for integral equations," J. Integral Equations, v. 3, 1981, pp. 299-315. MR 634453 (83j:45019)
  • [55] G. C. Hsiao & W. L. Wendland, "Super approximation for boundary integral methods," in Advances in Computer Methods for Partial Differential Equations--IV (R. Vichnevetsky & R. S. Stepleman, eds.), IMACS Symp., Dept. of Comput. Sci., Rutgers Univ., New Brunswick, N.J., 1981, pp. 200-205
  • [56] M. A. Jaswon & G. T. Symm, Integral Equation Methods in Potential Theory and Elastostatics, Academic Press, London, 1977. MR 0499236 (58:17147)
  • [57] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin and New York, 1966. MR 0203473 (34:3324)
  • [58] J. J. Kohn & L. Nirenberg, "On the algebra of pseudo-differential operators," Comm. Pure. Appl. Math., v. 18, 1965, pp. 269-305. MR 0176362 (31:636)
  • [59] A. Krawietz, Energetische Behandlung des Singularitätenverfahrens, Doctoral Dissertation, Technical University, Berlin, Germany, 1972.
  • [60] G. Kuhn & W. Möhrmann, "Boundary element methods in elastostatics: Theory and applications," Appl. Math. Modelling, v. 7, 1983, pp. 97-105.
  • [61] V. D. Kupradze, Randwertaufgaben der Schwingungstheorie und Integralgleichungen, Deutscher Verlag d. Wiss., Berlin, 1956. MR 0079720 (18:135c)
  • [62] V. D. Kupradze, Potential Methods in the Theory of Elasticity, Israel Program for Scientific Transl., Jerusalem, 1965. MR 0223128 (36:6177)
  • [63] V. D. Kupradze, T. G. Gegelia, M. O. Basheleishvili & T. V. Burchuladze, Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity, North-Holland, Amsterdam, 1979. MR 530377 (80h:73002)
  • [64] U. Lamp, T. Schleicher, E. Stephan & W. L. Wendland, "The boundary integral method for a plane mixed boundary value problem," in Advances in Computer Methods for Partial Differential Equations--IV (R. Vichnevetsky & R. S. Stepleman, eds.), IMACS Symp., Dept. of Comput. Sci., Rutgers Univ., New Brunswick, N.J., 1981, pp. 222-229.
  • [65] U. Lamp, T. Schleicher, E. Stephan & W. L. Wendland, "Galerkin collocation for an improved boundary element method for a plane mixed boundary value problem," Computing. (To appear.) MR 773929 (86k:65112)
  • [66] T. R. Lucas & G. W. Reddien, "Some collocation methods for nonlinear boundary value problems," SIAM J. Numer. Anal., v. 9, 1972, pp. 341-356. MR 0309333 (46:8443)
  • [67] E. Martensen, "Berechnung der Druckverteilung an Gitterprofilen in ebener Potentialströmung mit einer Fredholmschen Integralgleichung," Arch Rational Mech. Anal., v. 3, 1959, pp. 235-270. MR 0114431 (22:5252)
  • [68] G. Mehlhorn, Ein Beitrag zum Kipp-Problem bei Stahlbeton- und Spannbetonträgern, Doctoral Dissertation, Dl7, Technische Hochschule Darmstadt, Germany, 1970.
  • [69] S. G. Michlin & S. Prössdorf, Singuläre Integraloperatoren, Akademie-Verlag, Berlin, 1980.
  • [70] N. I. Muskhelishvili, Some Basic Problems of the Mathematical Theory of Elasticity, Noordhoff, Groningen, 1963. MR 0176648 (31:920)
  • [71] N. I. Muskhelishvili, Singular Integral Equations, Noordhoff, Groningen, 1953. MR 0355494 (50:7968)
  • [72] G. G. Mustoe & I. C. Mathews, "Direct boundary integral methods, point collocation and variational procedures." (To appear.)
  • [73] J. C. Nedelec, Approximation des Equations Intégrales en Mecanique et en Physique, Lecture Notes, Centre de Mathématiques Appliquées, Ecole Polytechnique, Palaiseau, France, 1977.
  • [74] J. A. Nitsche, "Zur Konvergenz von Näherungsverfahren bezüglich verschiedener Normen," Numer. Math., v. 15, 1970, pp. 224-228. MR 0279509 (43:5231)
  • [75] Ben Noble, A Bibliography on: "Methods for solving integral equations," Math. Res. Center Tech. Report 1176 and 1177, Madison, Wisc., 1971.
  • [76] F. A. Oliveira, "Collocation and residual correction," Numer. Math., v. 36, 1980, pp. 27-31. MR 595804 (82a:65060)
  • [77] R. S. Palais, Seminar on the Atiyah-Singer Index Theorem, Princeton Univ. Press, Princeton, N.J., 1965. MR 0198494 (33:6649)
  • [78] P. M. Prenter, "A collocation method for the numerical solution of integral equations," SIAM J. Numer. Anal., v. 10, 1973, pp. 570-581. MR 0327064 (48:5406)
  • [79] S. Prössdorf & B. Silbermann, Projektionsverfahren und die näherungsweise Lösung singulärer Gleichungen, Teubner, Leipzig, 1977. MR 0494817 (58:13602)
  • [80] S. Prössdorf & G. Schmidt, "A finite element collocation method for singular integral equations," Math. Nachr., v. 100, 1981, pp. 33-60. MR 632620 (82m:65127)
  • [81] S. Prössdorf & G. Schmidt, "A finite element collocation method for systems of singular integral equations," Preprint P-MATH-26/81, Akademie der Wissenschaften der DDR, Institut für Mathematik, DDR-1080 Berlin, Mohrenstr. 39, 1981.
  • [82] G. R. Richter, "Superconvergence of piecewise polynomial Galerkin approximations for Fredholm integral equations of the second kind," Numer. Math., v. 31, 1978, pp. 63-70. MR 508588 (80a:65273)
  • [83] F. Riesz & Bela Sz.-Nagy, Vorlesungen über Funktionalanalysis, Deutscher Verlag d. Wiss., Berlin, 1956. MR 0083695 (18:747e)
  • [84] F. J. Rizzo, "An integral equation approach to boundary value problems of classical elastostatics," Quart. Appl. Math., v. 25, 1967, pp. 83-95.
  • [85] M. N. Le Roux, Resolution Numérique du Problème du Potential dans le Plan par une Méthode Variationelle d'Eléments Finis, Doctoral thesis, Université de Rennes, Sér. A No. 347 ser. 38, France, 1974.
  • [86] M. N. Le Roux, "Équations intégrales pour le problème du potential électrique dans le plan," C. R. Acad. Sci. Paris, Ser. A, 1974, p. 278. MR 0361418 (50:13863)
  • [87] R. D. Russell, "Collocation for systems of boundary value problems," Numer. Math., v. 23, 1974, pp. 119-133. MR 0416074 (54:4150)
  • [88] E. Schäfer, "Fehlerabschätzungen für Eigenwertnäherungen nach der Ersatzkernmethode bei Integralgleichungen," Numer. Math., v. 32, 1979, pp. 281-290. MR 535195 (80e:65129)
  • [89] L. L. Schumaker, Spline Functions: Basic Theory, Wiley, New York, 1981. MR 606200 (82j:41001)
  • [90] R. Seeley, "Topics in pseudo-differential operators," in Pseudo-Differential Operators (L. Nirenberg, ed.), CIME, Cremonese, Roma, 1969, pp. 169-305. MR 0259335 (41:3973)
  • [91] R. Shaw et al., Innovative Numerical Analysis for the Engineering Sciences, The University Press of Virginia, 1980.
  • [92] E. Stephan & W. L. Wendland, Remarks to Galerkin and Least Squares Methods with Finite Elements for General Elliptic Problems Lecture Notes in Math., v. 564, Springer-Verlag, Berlin, 1976, pp. 461-471; Manuscripta Geodaetica, v. 1, 1976, pp. 93-123. MR 0520343 (58:25012)
  • [93] F. Stummel, Rand- und Eigenweitaufgaben in Sobolevschen Räumen, Lecture Notes in Math., vol. 102, Springer-Verlag, Berlin, 1969. MR 0463907 (57:3845)
  • [94] B. Swartz & B. Wendroff, "The relation between the Galerkin and collocation methods using smooth splines," SIAM J. Numer. Anal., v. 11, 1974, pp. 994-996. MR 0362953 (50:15391)
  • [95] G. T. Symm, "Numerical mapping of exterior domains," Numer. Math., v. 10, 1967, pp. 437-445. MR 0220465 (36:3525)
  • [96] I. Szabo, Höhere Technische Mechanik, Springer-Verlag, Berlin, 1956.
  • [97] F. Treves, Introduction to Pseudodifferential and Fourier Integral Operators I, Plenum Press, New York, 1980. MR 597145 (82i:58068)
  • [98] V. V. Voronin & V. A. Cecoho, "An interpolation method for solving an integral equation of the first kind with a logarithmic singularity," Soviet Math. Dokl., v. 15, 1974, pp. 949-952.
  • [99] J. Watson, "Hermitian cubic boundary elements for plane problems of fracture mechanics," Res. Mechanica, 1981.
  • [100] W. L. Wendland, "On Galerkin collocation methods for integral equations of elliptic boundary value problems," in Numerical Treatment of Integral Equations (J. Albrecht & L. Collatz, eds.), Internat. Ser. Numer. Math., vol. 53, Birkhäuser, Basel, 1980, pp. 244-275. MR 590455 (82f:65142)
  • [101] W. L. Wendland, "On the asymptotic convergence of boundary integral methods," in Boundary Element Methods (C. A. Brebbia, ed.), Springer-Verlag, Berlin and New York, 1981, pp. 412-430. MR 732954 (85i:73024)
  • [102] W. L. Wendland, "Asymptotic convergence of boundary element methods," in Lectures on the Numerical Solution of Partial Differential Equations (I. Babuška, T.-P. Liu & J. Osborn, eds.), Lecture Notes, vol. 20, Univ. of Maryland, College Park, MD, 1981, pp. 435-528.
  • [103] W. L. Wendland, "Asymptotic accuracy and convergence," in Progress in Boundary Element Methods (C. A. Brebbia, ed.), Pentech Press, London, Plymouth, vol. 1, 1981, pp. 289-313.
  • [104] H. Werner & R. Schaback, Praktische Mathematik, Vol. II, Springer-Verlag, Berlin and New York, 1972. MR 0408187 (53:11953)
  • [105] O. S. Zienkiewicz, The Finite Element Method, McGraw-Hill, London, 1977.
  • [106] J. Elschner & G. Schmidt, "On spline interpolation in periodic Sobolev spaces," Preprint P-MATH-01/83, Akademie der Wissenschaften der DDR, Institut für Mathematik, DDR 1080 Berlin, Mohrenstr. 39, 1983 (added in proof).

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65N35, 65L10, 65L60, 65N30

Retrieve articles in all journals with MSC: 65N35, 65L10, 65L60, 65N30


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1983-0717691-6
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society