A splinetrigonometric Galerkin method and an exponentially convergent boundary integral method
Author:
Douglas N. Arnold
Journal:
Math. Comp. 41 (1983), 383397
MSC:
Primary 65N15; Secondary 41A15, 45L05, 65D07, 65R20
MathSciNet review:
717692
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We consider a Galerkin method for functional equations in one space variable which uses periodic cardinal splines as trial functions and trigonometric polynomials as test functions. We analyze the method applied to the integral equation of the first kind arising from a single layer potential formulation of the Dirichlet problem in the interior or exterior of an analytic plane curve. In constrast to ordinary spline Galerkin methods, we show that the method is stable, and so provides quasioptimal approximation, in a large family of Hilbert spaces including all the Sobolev spaces of negative order. As a consequence we prove that the approximate solution to the Dirichlet problem and all its derivatives converge pointwise with exponential rate.
 [1]
Satya
N. Atluri, Richard
H. Gallagher, and O.
C. Zienkiewicz (eds.), Hybrid and mixed finite element
methods, A WileyInterscience Publication, John Wiley & Sons,
Inc., New York, 1983. Papers from the International Symposium in honor of
Theodore Pian held at the Georgia Institute of Technology, Atlanta, Ga.,
April 8–10, 1981; Wiley Series in Numerical Methods in Engineering.
MR 718335
(84i:73001)
 [2]
Douglas
N. Arnold and Wolfgang
L. Wendland, On the asymptotic convergence of
collocation methods, Math. Comp.
41 (1983), no. 164, 349–381. MR 717691
(85h:65254), http://dx.doi.org/10.1090/S00255718198307176916
 [3]
A.
K. Aziz and R.
Bruce Kellogg, Finite element analysis of a
scattering problem, Math. Comp.
37 (1981), no. 156, 261–272. MR 628694
(82i:65069), http://dx.doi.org/10.1090/S00255718198106286942
 [4]
Ivo
Babuška, Errorbounds for finite element method, Numer.
Math. 16 (1970/1971), 322–333. MR 0288971
(44 #6166)
 [5]
Ivo
Babuška and A.
K. Aziz, Survey lectures on the mathematical foundations of the
finite element method, The mathematical foundations of the finite
element method with applications to partial differential equations (Proc.
Sympos., Univ. Maryland, Baltimore, Md., 1972) Academic Press, New York,
1972, pp. 1–359. With the collaboration of G. Fix and R. B.
Kellogg. MR
0421106 (54 #9111)
 [6]
Gaetano
Fichera, Linear elliptic equations of higher order in two
independent variables and singular integral equations, with applications to
anistropic inhomogeneous elasticity, Partical differential equations
and continuum mechanics, Univ. of Wisconsin Press, Madison, Wis., 1961,
pp. 55–80. MR 0156084
(27 #6016)
 [7]
HansPeter
Helfrich, Simultaneous approximation in negative norms of arbitrary
order, RAIRO Anal. Numér. 15 (1981),
no. 3, 231–235 (English, with French summary). MR 631677
(82k:65054)
 [8]
Peter
Henrici, Fast Fourier methods in computational complex
analysis, SIAM Rev. 21 (1979), no. 4,
481–527. MR
545882 (80i:65031), http://dx.doi.org/10.1137/1021093
 [9]
G. Hsiao, On the Stability of Integral Equations of the First Kind with Logarithmic Kernels, Tech. Rep. No. 103A, Appl. Math. Inst., Univ. of Delaware, 1981.
 [10]
G.
C. Hsiao, P.
Kopp, and W.
L. Wendland, A Galerkin collocation method for some integral
equations of the first kind, Computing 25 (1980),
no. 2, 89–130 (English, with German summary). MR 620387
(83e:65210), http://dx.doi.org/10.1007/BF02259638
 [11]
George
Hsiao and R.
C. MacCamy, Solution of boundary value problems by integral
equations of the first kind, SIAM Rev. 15 (1973),
687–705. MR 0324242
(48 #2594)
 [12]
George
C. Hsiao and Wolfgang
L. Wendland, A finite element method for some integral equations of
the first kind, J. Math. Anal. Appl. 58 (1977),
no. 3, 449–481. MR 0461963
(57 #1945)
 [13]
G.
C. Hsiao and W.
L. Wendland, The AubinNitsche lemma for integral equations,
J. Integral Equations 3 (1981), no. 4, 299–315.
MR 634453
(83j:45019)
 [14]
M.
N. Le Roux, Méthode d’éléments finis
pour la résolution numérique de problèmes
extérieurs en dimension 2, RAIRO Anal. Numér.
11 (1977), no. 1, 27–60, 112 (French, with
English summary). MR 0448954
(56 #7259)
 [15]
I.
J. Schoenberg, Cardinal interpolation and spline functions, J.
Approximation Theory 2 (1969), 167–206. MR 0257616
(41 #2266)
 [16]
Larry
L. Schumaker, Spline functions: basic theory, John Wiley &
Sons, Inc., New York, 1981. Pure and Applied Mathematics; A
WileyInterscience Publication. MR 606200
(82j:41001)
 [17]
Gilbert
Strang and George
J. Fix, An analysis of the finite element method,
PrenticeHall, Inc., Englewood Cliffs, N. J., 1973. PrenticeHall Series in
Automatic Computation. MR 0443377
(56 #1747)
 [1]
 D. Arnold, I. Babuška & J. Osborn, "Selection of finite element methods," Proc. Internat. Sympos. on Hybrid and Mixed Finite Element Methods (S. N. Atluri and R. H. Gallagher, eds.), Wiley, New York, 1981. MR 718335 (84i:73001)
 [2]
 D. Arnold & W. Wendland, "On the asymptotic convergence of collocation methods," Math. Comp.. v. 41, 1983, pp. MR 717691 (85h:65254)
 [3]
 A. Aziz & B. Kellogg, "Finite element analysis of a scattering problem," Math. Comp., v. 37, 1981, pp. 261272. MR 628694 (82i:65069)
 [4]
 I. Babuška, "Errorbounds for finite element method," Numer. Math., v. 16, 1970, pp. 322333. MR 0288971 (44:6166)
 [5]
 I. Babuška & A. K. Aziz, "Survey lectures on the mathematical foundations of the finite element method," The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (A. K. Aziz, ed.), Academic Press, New York, 1972. MR 0421106 (54:9111)
 [6]
 G. Fichera, "Linear elliptic equations of higher order in two independent variables and singular integral equations," Proc. Conf. on Partial Differential Equations and Continuum Mechanics (Madison, Wise.), Univ. of Wisconsin Press, 1961. MR 0156084 (27:6016)
 [7]
 H.P. Helfrich, "Simultaneous approximation in negative norms of arbitrary order," RAIRO Anal. Numér., v. 15, 1981, pp. 231235. MR 631677 (82k:65054)
 [8]
 P. Henrici, "Fast Fourier methods in computational complex analysis," SIAM Rev., v. 15, 1979, pp. 481527. MR 545882 (80i:65031)
 [9]
 G. Hsiao, On the Stability of Integral Equations of the First Kind with Logarithmic Kernels, Tech. Rep. No. 103A, Appl. Math. Inst., Univ. of Delaware, 1981.
 [10]
 G. Hsiao, P. Kopp & W. Wendland, "A Galerkin collocation method for some integral equations of the first kind," Computing, v. 25, 1980, pp. 89130. MR 620387 (83e:65210)
 [11]
 G. Hsiao & R. McCamy, "Solution of boundary value problems by integral equations of the first kind," SIAM Rev., v. 15, 1973, pp. 687705. MR 0324242 (48:2594)
 [12]
 G. Hsiao & W. Wendland, "A finite element method for some integral equations of the first kind," J. Math. Anal. Appl., v. 58, 1977, pp. 449481. MR 0461963 (57:1945)
 [13]
 G. Hsiao & W. Wendland, "The AubinNitsche lemma for integral equations," J. Integral Equations, v. 3, 1981, pp. 299315. MR 634453 (83j:45019)
 [14]
 M. N. Le Roux, "Méthode d'éléments finis pour la résolution numérique de problèmes extérieurs en dimension 2," RAIRO Anal. Numér., v. 11, 1977, pp. 2760. MR 0448954 (56:7259)
 [15]
 I. Schoenberg, "Cardinal interpolation and spline functions," J. Approx. Theory, v. 2, 1969, pp. 167206. MR 0257616 (41:2266)
 [16]
 L. Schumaker, Spline Functions: Basic Theory, Wiley, New York, 1981. MR 606200 (82j:41001)
 [17]
 G. Strang & G. Fix, An Analysis of the Finite Element Method, PrenticeHall, Englewood Cliffs, N.J., 1973. MR 0443377 (56:1747)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
65N15,
41A15,
45L05,
65D07,
65R20
Retrieve articles in all journals
with MSC:
65N15,
41A15,
45L05,
65D07,
65R20
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718198307176928
PII:
S 00255718(1983)07176928
Article copyright:
© Copyright 1983
American Mathematical Society
