A spline-trigonometric Galerkin method and an exponentially convergent boundary integral method

Author:
Douglas N. Arnold

Journal:
Math. Comp. **41** (1983), 383-397

MSC:
Primary 65N15; Secondary 41A15, 45L05, 65D07, 65R20

DOI:
https://doi.org/10.1090/S0025-5718-1983-0717692-8

MathSciNet review:
717692

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider a Galerkin method for functional equations in one space variable which uses periodic cardinal splines as trial functions and trigonometric polynomials as test functions.

We analyze the method applied to the integral equation of the first kind arising from a single layer potential formulation of the Dirichlet problem in the interior or exterior of an analytic plane curve. In constrast to ordinary spline Galerkin methods, we show that the method is stable, and so provides quasioptimal approximation, in a large family of Hilbert spaces including all the Sobolev spaces of negative order. As a consequence we prove that the approximate solution to the Dirichlet problem and all its derivatives converge pointwise with exponential rate.

**[1]**Satya N. Atluri, Richard H. Gallagher, and O. C. Zienkiewicz (eds.),*Hybrid and mixed finite element methods*, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1983. Papers from the International Symposium in honor of Theodore Pian held at the Georgia Institute of Technology, Atlanta, Ga., April 8–10, 1981; Wiley Series in Numerical Methods in Engineering. MR**718335****[2]**Douglas N. Arnold and Wolfgang L. Wendland,*On the asymptotic convergence of collocation methods*, Math. Comp.**41**(1983), no. 164, 349–381. MR**717691**, https://doi.org/10.1090/S0025-5718-1983-0717691-6**[3]**A. K. Aziz and R. Bruce Kellogg,*Finite element analysis of a scattering problem*, Math. Comp.**37**(1981), no. 156, 261–272. MR**628694**, https://doi.org/10.1090/S0025-5718-1981-0628694-2**[4]**Ivo Babuška,*Error-bounds for finite element method*, Numer. Math.**16**(1970/1971), 322–333. MR**0288971**, https://doi.org/10.1007/BF02165003**[5]**Ivo Babuška and A. K. Aziz,*Survey lectures on the mathematical foundations of the finite element method*, The mathematical foundations of the finite element method with applications to partial differential equations (Proc. Sympos., Univ. Maryland, Baltimore, Md., 1972) Academic Press, New York, 1972, pp. 1–359. With the collaboration of G. Fix and R. B. Kellogg. MR**0421106****[6]**Gaetano Fichera,*Linear elliptic equations of higher order in two independent variables and singular integral equations, with applications to anistropic inhomogeneous elasticity*, Partical differential equations and continuum mechanics, Univ. of Wisconsin Press, Madison, Wis., 1961, pp. 55–80. MR**0156084****[7]**Hans-Peter Helfrich,*Simultaneous approximation in negative norms of arbitrary order*, RAIRO Anal. Numér.**15**(1981), no. 3, 231–235 (English, with French summary). MR**631677**, https://doi.org/10.1051/m2an/1981150302311**[8]**Peter Henrici,*Fast Fourier methods in computational complex analysis*, SIAM Rev.**21**(1979), no. 4, 481–527. MR**545882**, https://doi.org/10.1137/1021093**[9]**G. Hsiao,*On the Stability of Integral Equations of the First Kind with Logarithmic Kernels*, Tech. Rep. No. 103-A, Appl. Math. Inst., Univ. of Delaware, 1981.**[10]**G. C. Hsiao, P. Kopp, and W. L. Wendland,*A Galerkin collocation method for some integral equations of the first kind*, Computing**25**(1980), no. 2, 89–130 (English, with German summary). MR**620387**, https://doi.org/10.1007/BF02259638**[11]**George Hsiao and R. C. MacCamy,*Solution of boundary value problems by integral equations of the first kind*, SIAM Rev.**15**(1973), 687–705. MR**0324242**, https://doi.org/10.1137/1015093**[12]**George C. Hsiao and Wolfgang L. Wendland,*A finite element method for some integral equations of the first kind*, J. Math. Anal. Appl.**58**(1977), no. 3, 449–481. MR**0461963**, https://doi.org/10.1016/0022-247X(77)90186-X**[13]**G. C. Hsiao and W. L. Wendland,*The Aubin-Nitsche lemma for integral equations*, J. Integral Equations**3**(1981), no. 4, 299–315. MR**634453****[14]**M. N. Le Roux,*Méthode d’éléments finis pour la résolution numérique de problèmes extérieurs en dimension 2*, RAIRO Anal. Numér.**11**(1977), no. 1, 27–60, 112 (French, with English summary). MR**0448954**, https://doi.org/10.1051/m2an/1977110100271**[15]**I. J. Schoenberg,*Cardinal interpolation and spline functions*, J. Approximation Theory**2**(1969), 167–206. MR**0257616****[16]**Larry L. Schumaker,*Spline functions: basic theory*, John Wiley & Sons, Inc., New York, 1981. Pure and Applied Mathematics; A Wiley-Interscience Publication. MR**606200****[17]**Gilbert Strang and George J. Fix,*An analysis of the finite element method*, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1973. Prentice-Hall Series in Automatic Computation. MR**0443377**

Retrieve articles in *Mathematics of Computation*
with MSC:
65N15,
41A15,
45L05,
65D07,
65R20

Retrieve articles in all journals with MSC: 65N15, 41A15, 45L05, 65D07, 65R20

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1983-0717692-8

Article copyright:
© Copyright 1983
American Mathematical Society