The use of positive matrices for the analysis of the large time behavior of the numerical solution of reaction-diffusion systems

Author:
Luciano Galeone

Journal:
Math. Comp. **41** (1983), 461-472

MSC:
Primary 65M10; Secondary 15A51, 65C20

MathSciNet review:
717696

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we study the numerical solution of nonlinear reaction-diffusion systems with homogeneous Neumann boundary conditions, via the known -method.

We show that if conditions for the positivity of solutions are imposed, then the study of the asymptotic behavior of the numerical solution can be done by means of the theory of stochastic matrices.

In this way it is shown that the numerical solution reproduces the asymptotic behavior of the corresponding theoretical one. In particular, we obtain the decay of the solution to its mean value.

An analysis of the asymptotic stability of the equilibrium points and the convergence of the numerical scheme is given based on the use of *M*-matrices.

Finally we consider the case in which the nonlinear term satisfies a condition of quasimonotonicity.

**[1]**Catherine Bolley and Michel Crouzeix,*Conservation de la positivité lors de la discrétisation des problèmes d’évolution paraboliques*, RAIRO Anal. Numér.**12**(1978), no. 3, 237–245, iv (French). MR**509974****[2]**Abraham Berman and Robert J. Plemmons,*Nonnegative matrices in the mathematical sciences*, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1979. Computer Science and Applied Mathematics. MR**544666****[3]**V. Capasso and S. L. Paveri-Fontana,*Some results on linear stochastic multicompartmental systems*, Math. Biosci.**55**(1981), no. 1-2, 7–26. MR**625265**, 10.1016/0025-5564(81)90010-9**[4]**S. L. Campbell & C. D. Mayer,*Generalized Inverses of Linear Transformations*, Pitman, London, 1979.**[5]**Edward Conway, David Hoff, and Joel Smoller,*Large time behavior of solutions of systems of nonlinear reaction-diffusion equations*, SIAM J. Appl. Math.**35**(1978), no. 1, 1–16. MR**0486955****[6]**Paul C. Fife,*Mathematical aspects of reacting and diffusing systems*, Lecture Notes in Biomathematics, vol. 28, Springer-Verlag, Berlin-New York, 1979. MR**527914****[7]**H. F. Walker (ed.),*Nonlinear diffusion*, Pitman, London-San Francisco, Calif.-Melbourne, 1977. NSF-CBMS Regional Conference on Nonlinear Diffusion held at the University of Houston, Houston, Tex., June, 1976; Research Notes in Mathematics, No. 14. MR**0442427****[8]**L. Galeone and L. Lopez,*Decay to spatially homogeneous states for the numerical solution of reaction-diffusion systems*, Calcolo**19**(1982), no. 2, 193–208. MR**697462**, 10.1007/BF02575686**[9]**David Hoff,*Stability and convergence of finite difference methods for systems of nonlinear reaction-diffusion equations*, SIAM J. Numer. Anal.**15**(1978), no. 6, 1161–1177. MR**512689**, 10.1137/0715077**[10]**John G. Kemeny and J. Laurie Snell,*Finite Markov chains*, Springer-Verlag, New York-Heidelberg, 1976. Reprinting of the 1960 original; Undergraduate Texts in Mathematics. MR**0410929****[11]**J. P. LaSalle,*Stability theory for difference equations*, Studies in ordinary differential equations, Math. Assoc. of America, Washington, D.C., 1977, pp. 1–31. Stud. in Math., Vol. 14. MR**0481689****[12]**Robert H. Martin Jr.,*Asymptotic stability and critical points for nonlinear quasimonotone parabolic systems*, J. Differential Equations**30**(1978), no. 3, 391–423. MR**521861**, 10.1016/0022-0396(78)90008-6**[13]**Robert D. Richtmyer and K. W. Morton,*Difference methods for initial-value problems*, Second edition. Interscience Tracts in Pure and Applied Mathematics, No. 4, Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1967. MR**0220455****[14]**Richard S. Varga,*Matrix iterative analysis*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1962. MR**0158502**

Retrieve articles in *Mathematics of Computation*
with MSC:
65M10,
15A51,
65C20

Retrieve articles in all journals with MSC: 65M10, 15A51, 65C20

Additional Information

DOI:
http://dx.doi.org/10.1090/S0025-5718-1983-0717696-5

Keywords:
Nonlinear reaction-diffusion systems,
methods,
*M*-matrices,
stochastic matrices,
*A*-stability,
quasimonotone functions

Article copyright:
© Copyright 1983
American Mathematical Society