An efficient algorithm for bifurcation problems of variational inequalities
Author:
H. D. Mittelmann
Journal:
Math. Comp. 41 (1983), 473485
MSC:
Primary 65J15; Secondary 49A29, 49D37
MathSciNet review:
717697
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: For a class of variational inequalities on a Hilbert space H bifurcating solutions exist and may be characterized as critical points of a functional with respect to the intersection of the level surfaces of another functional and a closed convex subset K of H. In a recent paper [13] we have used a gradientprojection type algorithm to obtain the solutions for discretizations of the variational inequalities. A related but Newtonbased method is given here. Global and asymptotically quadratic convergence is proved. Numerical results show that it may be used very efficiently in following the bifurcating branches and that it compares favorably with several other algorithms. The method is also attractive for a class of nonlinear eigenvalue problems for which it reduces to a generalized Rayleighquotient iteration. So some results are included for the path following in turningpoint problems.
 [1]
Bifurcation theory and nonlinear eigenvalue problems, Edited by
Joseph B. Keller and Stuart Antman, W. A. Benjamin, Inc., New
YorkAmsterdam, 1969. MR 0241213
(39 #2555)
 [2]
Tony
F. C. Chan and H.
B. Keller, Arclength continuation and multigrid techniques for
nonlinear elliptic eigenvalue problems, SIAM J. Sci. Statist. Comput.
3 (1982), no. 2, 173–194. MR 658631
(83d:65152), http://dx.doi.org/10.1137/0903012
 [3]
R. Chandra, Conjugate Gradient Methods for Partial Differential Equations, Techn. Rep. no. 129, Dept. of Comp. Sci., Yale University, 1978.
 [4]
L.
Ju. Fradkin and G.
C. Wake, The critical explosion parameter in the theory of thermal
ignition, J. Inst. Math. Appl. 80 (1977), no. 4,
471–484. MR 0471653
(57 #11378)
 [5]
I.
M. Gel′fand, Some problems in the theory of quasilinear
equations, Amer. Math. Soc. Transl. (2) 29 (1963),
295–381. MR 0153960
(27 #3921)
 [6]
Kurt
Georg, On the convergence of an inverse iteration method for
nonlinear elliptic eigenvalue problems, Numer. Math.
32 (1979), no. 1, 69–74. MR 525637
(80f:65110), http://dx.doi.org/10.1007/BF01397650
 [7]
Bifurcation theory and nonlinear eigenvalue problems, Edited by
Joseph B. Keller and Stuart Antman, W. A. Benjamin, Inc., New
YorkAmsterdam, 1969. MR 0241213
(39 #2555)
 [8]
Herbert
B. Keller, Numerical solution of bifurcation and nonlinear
eigenvalue problems, Applications of bifurcation theory (Proc.
Advanced Sem., Univ. Wisconsin, Madison, Wis., 1976) Academic Press, New
York, 1977, pp. 359–384. Publ. Math. Res. Center, No. 38. MR 0455353
(56 #13592)
 [9]
Alexander
Kratochvíl and Jindřich
Nečas, Gradient methods for the construction of
LjusternikSchnirelmann critical values, RAIRO Anal. Numér.
14 (1980), no. 1, 43–54 (English, with French
summary). MR
566089 (81i:58019)
 [10]
Milan
Kučera, A new method for obtaining eigenvalues of
variational inequalities based on bifurcation theory, Časopis
Pěst. Mat. 104 (1979), no. 4, 389–411,
413 (English, with Czech summary). MR 553173
(80m:49010)
 [11]
Stephen
F. McCormick, A mesh refinement method for
𝐴𝑥=𝜆𝐵𝑥, Math. Comp. 36 (1981), no. 154, 485–498. MR 606508
(82d:65070), http://dx.doi.org/10.1090/S00255718198106065084
 [12]
Erich
Miersemann, Verzweigungsprobleme für
Variationsungleichungen, Math. Nachr. 65 (1975),
187–209 (German). MR 0387843
(52 #8681)
 [13]
H.D.
Mittelmann, Bifurcation problems for discrete variational
inequalities, Math. Methods Appl. Sci. 4 (1982),
no. 2, 243–258. MR 659040
(83g:49011), http://dx.doi.org/10.1002/mma.1670040116
 [14]
H. D. Mittelmann & H. Weber, "Numerical methods for bifurcation problemsA survey and classification," in Bifurcation Problems and Their Numerical Solution (H. D. Mittelmann and H. Weber, eds.), ISNM 54, BirkhäuserVerlag, Basel, 1980.
 [15]
J. Necas, "Approximation methods for finding critical points of even functionals," Trudy Matem. Inst. A.N. SSSR, v. 134, 1975, 235239.
 [16]
J.
M. Ortega and W.
C. Rheinboldt, Iterative solution of nonlinear equations in several
variables, Academic Press, New YorkLondon, 1970. MR 0273810
(42 #8686)
 [17]
C.
C. Paige and M.
A. Saunders, Solutions of sparse indefinite systems of linear
equations, SIAM J. Numer. Anal. 12 (1975),
no. 4, 617–629. MR 0383715
(52 #4595)
 [18]
G.
Peters and J.
H. Wilkinson, Inverse iteration, illconditioned equations and
Newton’s method, SIAM Rev. 21 (1979),
no. 3, 339–360. MR 535118
(80f:65040), http://dx.doi.org/10.1137/1021052
 [19]
Paul
H. Rabinowitz, Variational methods for nonlinear elliptic
eigenvalue problems, Indiana Univ. Math. J. 23
(1973/74), 729–754. MR 0333442
(48 #11767)
 [20]
P.
Spellucci, Some convergence results for generalized gradient
projection methods, IX. Oberwolfach Conference on Operations Research
(Oberwolfach, 1978), Operations Res. Verfahren, vol. 36, Hain,
Königstein/Ts., 1980, pp. 271–280. MR 605158
(83a:90157)
 [21]
A. Spence & B. Werner, "Non simple turning points and cusps," IMA J. Numer. Anal. (To appear.)
 [22]
J.
H. Wilkinson, The algebraic eigenvalue problem, Clarendon
Press, Oxford, 1965. MR 0184422
(32 #1894)
 [1]
 M. S. Berger, "A bifurcation theory for nonlinear elliptic partial differntial equations and related systems," Bifurcation Theory and Nonlinear Eigenvalue Problems (J. B. Keller and S. Antman, eds.), Benjamin, New York, 1969. MR 0241213 (39:2555)
 [2]
 T. F. C. Chan & H. B. Keller, "Arclength continuation and multigrid techniques for nonlinear elliptic eigenvalue problems," SIAM J. Sci. Statist. Comput., v. 3, 1982, pp. 173194. MR 658631 (83d:65152)
 [3]
 R. Chandra, Conjugate Gradient Methods for Partial Differential Equations, Techn. Rep. no. 129, Dept. of Comp. Sci., Yale University, 1978.
 [4]
 L. J. Fradkin & G. C. Wake, "The critical explosion parameter in the theory of thermal ignition," J. Inst. Math. Appl., v. 20, 1977, pp. 471484. MR 0471653 (57:11378)
 [5]
 I. M. Gelfand, "Some problems in the theory of quasilinear equations,"Amer. Math. Soc. Transl., v. 29, 1963, pp. 295381. MR 0153960 (27:3921)
 [6]
 K. Georg, "On the convergence of an inverse iteration method for nonlinear elliptic eigenvalue problems," Numer. Math., v. 32, 1979, pp. 6974. MR 525637 (80f:65110)
 [7]
 H. B. Keller, "Some positone problems suggested by nonlinear heat generation," in Bifurcation Theory and Nonlinear Eigenvalue Problems (J. B. Keller and S. Antman, eds.), Benjamin, New York, 1969. MR 0241213 (39:2555)
 [8]
 H. B. Keller, "Numerical solution of bifurcation and nonlinear eigenvlaue problems," in Applications of Bifurcation Theory (P. H. Rabinowitz, ed.), Academic Press, New York, 1977. MR 0455353 (56:13592)
 [9]
 A. Kratochvil & J. Necas, "Gradient methods for the construction of LjusternikSchnirelmann critical values," RAIRO Anal. Numér., v. 14, 1980, pp. 4354. MR 566089 (81i:58019)
 [10]
 M. Kucera, "A new method for obtaining eigenvalues of variational inequalities based on bifurcation theory," Časopis Pěst. Mat., v. 104, 1979, pp. 389411. MR 553173 (80m:49010)
 [11]
 S. F. McCormick, "A mesh refinement method for , Math. Comp., v. 36, 1981, pp. 485498. MR 606508 (82d:65070)
 [12]
 E. Miersemann, "Verzweigungsprobleme für Variationsungleichungen." Math. Nachr., v. 65, 1975, pp. 187209. MR 0387843 (52:8681)
 [13]
 H. D. Mittelmann, "Bifurcation problems for discrete variational inequalities," Math. Methods Appl. Sci., v. 4, 1982, pp. 243258. MR 659040 (83g:49011)
 [14]
 H. D. Mittelmann & H. Weber, "Numerical methods for bifurcation problemsA survey and classification," in Bifurcation Problems and Their Numerical Solution (H. D. Mittelmann and H. Weber, eds.), ISNM 54, BirkhäuserVerlag, Basel, 1980.
 [15]
 J. Necas, "Approximation methods for finding critical points of even functionals," Trudy Matem. Inst. A.N. SSSR, v. 134, 1975, 235239.
 [16]
 J. M. Ortega & W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York and London, 1970. MR 0273810 (42:8686)
 [17]
 C. C. Paige & M. A. Saunders, "Solution of sparse indefinite systems of linear equations," SIAM J. Numer. Anal., v. 12, 1975, pp. 617629. MR 0383715 (52:4595)
 [18]
 G. Peters & J. H. Wilkinson, "Inverse iteration, illconditioned equations and Newton's method," SIAM Rev., v. 21, 1979, pp. 339360. MR 535118 (80f:65040)
 [19]
 P. H. Rabinowitz, "Variational methods for nonlinear elliptic eigenvalue problems," Indiana Univ. Math. J., v. 23, 1974, pp. 729754. MR 0333442 (48:11767)
 [20]
 P. Spellucci, "Some convergence results for generalized gradient projection methods," Methods of Operations Research, Vol. 36, Verlag Anton Hain. Königsstein, 1980, pp. 271280. MR 605158 (83a:90157)
 [21]
 A. Spence & B. Werner, "Non simple turning points and cusps," IMA J. Numer. Anal. (To appear.)
 [22]
 J. H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965. MR 0184422 (32:1894)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
65J15,
49A29,
49D37
Retrieve articles in all journals
with MSC:
65J15,
49A29,
49D37
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718198307176977
PII:
S 00255718(1983)07176977
Article copyright:
© Copyright 1983
American Mathematical Society
