Some extensions of W. Gautschi's inequalities for the gamma function

Author:
D. Kershaw

Journal:
Math. Comp. **41** (1983), 607-611

MSC:
Primary 33A15; Secondary 26D20, 65D20

DOI:
https://doi.org/10.1090/S0025-5718-1983-0717706-5

MathSciNet review:
717706

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It has been shown by W. Gautschi that if , then for

These are compared with each other and with inequalities given by T. Erber and J. D. Kečkić and P. M. Vasić.

**[1]**E. F. Beckenbach & R. Bellman,*Inequalities*, 1st. ed., Springer-Verlag, Berlin and New York, 1961. MR**0158038 (28:1266)****[2]**T. Erber, "The gamma function inequalities of Gurland and Gautschi," Skand. Aktuarietidskr., 1960, 1961, pp. 27-28. MR**0132846 (24:A2682)****[3]**A. Erdélyi et al., Higher Transcendental Functions, Vol. I, McGraw-Hill, New York, 1953.**[4]**W. Gautschi, "Some elementary inequalities relating to the gamma and incomplete gamma function,"*J. Math. Phys.*, v. 38, 1959, pp. 77-81. MR**0103289 (21:2067)****[5]**J. D. Kečkić & P. M. Vasić, "Some inequalities for the gamma function,"*Publ. Inst. Math.*(Beograd) (N.S.), v. 11, 1971, pp. 107-114. MR**0308446 (46:7560)****[6]**D. S. Mitrinović, Analytic Inequalities, Springer-Verlag, Berlin and New York, 1970. MR**0274686 (43:448)**

Retrieve articles in *Mathematics of Computation*
with MSC:
33A15,
26D20,
65D20

Retrieve articles in all journals with MSC: 33A15, 26D20, 65D20

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1983-0717706-5

Keywords:
Gamma function,
inequalities

Article copyright:
© Copyright 1983
American Mathematical Society