Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Some integrals relating to the $ I\sb{e}$-function


Author: Shigehiko Okui
Journal: Math. Comp. 41 (1983), 613-622
MSC: Primary 33A40; Secondary 94A05
DOI: https://doi.org/10.1090/S0025-5718-1983-0717707-7
MathSciNet review: 717707
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Various integrals relating to the $ {I_e}$-function

$\displaystyle {I_e}(k,z) = \int_0^z {{e^{ - x}}{I_0}(kx)\;dx,} $

which finds a wide variety of applications in the fields of statistical communication theory and noise analysis, are evaluated in closed form.

References [Enhancements On Off] (What's this?)

  • [1] S. O. Rice, "Statistical properties of a sine wave plus random noise," Bell System Tech. J., v. 27, 1948, pp. 109-157. MR 0023483 (9:362c)
  • [2] M. Nakagami, "On the intensity distribution $ 2R/\sqrt {\alpha \beta } \quad \exp [ - {R^2}/2\quad (1/\alpha + 1/\beta )] \bullet {I_0}({R^2}/2[1/\beta - 1/\alpha ])$ and its application to signal statistics," J. Res. Nat. Bur. Standards Sect. D, v. 68D, 1964, pp. 995-1003. MR 0165836 (29:3116)
  • [3] W. R. Bennett & J. R. Davey, Data Transmission, McGraw-Hill, New York, 1965.
  • [4] S. Okui, N. Morinaga & T. Namekawa, "Statistical properties of maximal ratio combining diversity in correlated m-fading environments," Trans. IECE Japan, v. 62-B, 1979, pp. 283-290.
  • [5] F. Adachi, "Selection and scanning diversity effects in a digital FM land mobile radio with limiter discriminator detection," Trans. IECE Japan, v. 64-E, 1981, pp. 398-405.
  • [6] R. F. Pawula, S. O. Rice & J. H. Roberts, "Distribution of the phase angle between two vectors perturbed by Gaussian noise," IEEE Trans. Comm., v. COM-30, 1982, pp. 1828-1841.
  • [7] A. Erdelyi et al. (ed.), Higher Transcendental Functions, Vols. 1-3, McGraw-Hill, New York, 1955.
  • [8] A. Erdelyi et al. (ed.), Tables of Integral Transforms, Vols. 1 and 2, McGraw-Hill, New York, 1955.
  • [9] I. S. Gradshteyn & I. M. Ryzhik, Tables of Integrals, Series, and Products, Corrected and enlarged edition, Academic Press, New York, 1980.
  • [10] Y. L. Luke, Integrals of Bessel Functions, McGraw-Hill, New York, 1962. MR 0141801 (25:5198)
  • [11] F. A. J. Ford, "Some infinite integrals involving products of Bessel functions," J. London Math. Soc., v. 41, 1966, pp. 728-730. MR 0200493 (34:384)
  • [12] W. C. Lindsey, "Infinite integrals containing Bessel function products," J. Soc. Indust. Appl. Math., v. 12, 1964, pp. 458-464. MR 0167659 (29:4931)
  • [13] M. M. Agrest & M. S. Maksimov, Theory of Incomplete Cylindrical Functions and Their Applications, English edition, Springer-Verlag, Berlin and New York, 1971. MR 0346209 (49:10935)
  • [14] K. R. Lassey, "On the computation of certain integrals containing the modified Bessel function $ {I_0}(\xi )$," Math. Comp., v. 39, 1982, pp. 625-637. MR 669654 (83j:65029)
  • [15] F. Oberhettinger & L. Badii, Tables of Laplace Transforms, Springer-Verlag, Berlin and New York, 1973. MR 0352889 (50:5375)
  • [16] A. H. Nuttall, Some Integrals Involving the Q-Function, NUSC Tech. Report 4297, 1972.
  • [17] S. Okui, "Complete elliptic integrals resulting from infinite integrals of Bessel functions," J. Res. Nat. Bur. Standards Sect. B., v. 78B, 1974, pp. 113-135. MR 0352566 (50:5053)
  • [18] S. Okui, "Complete elliptic integrals resulting from infinite integrals of Bessel functions. II," J. Res. Nat. Bur. Standards Sect. B., v. 79B, 1975, pp. 137-170. MR 0419888 (54:7906)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 33A40, 94A05

Retrieve articles in all journals with MSC: 33A40, 94A05


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1983-0717707-7
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society