New integer factorizations

Author:
Thorkil Naur

Journal:
Math. Comp. **41** (1983), 687-695

MSC:
Primary 11Y05

DOI:
https://doi.org/10.1090/S0025-5718-1983-0717713-2

MathSciNet review:
717713

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: New factorizations of Fibonacci numbers, Lucas numbers, and numbers of the form are presented together with the strategy (a combination of known factorization methods) used to obtain them.

**[1]**Richard P. Brent,*An improved Monte Carlo factorization algorithm*, BIT**20**(1980), no. 2, 176–184. MR**583032**, https://doi.org/10.1007/BF01933190**[2]**Richard P. Brent and John M. Pollard,*Factorization of the eighth Fermat number*, Math. Comp.**36**(1981), no. 154, 627–630. MR**606520**, https://doi.org/10.1090/S0025-5718-1981-0606520-5**[3]**John Brillhart, D. H. Lehmer, and J. L. Selfridge,*New primality criteria and factorizations of 2^{𝑚}±1*, Math. Comp.**29**(1975), 620–647. MR**0384673**, https://doi.org/10.1090/S0025-5718-1975-0384673-1**[4]**D. Jarden,*Recurring Sequences*, 3rd ed., Riveon Lemathematica, Jerusalem, 1973.**[5]**D. H. Lehmer, Letter of July 14, 1982.**[6]**Michael A. Morrison and John Brillhart,*A method of factoring and the factorization of 𝐹₇*, Math. Comp.**29**(1975), 183–205. Collection of articles dedicated to Derrick Henry Lehmer on the occasion of his seventieth birthday. MR**0371800**, https://doi.org/10.1090/S0025-5718-1975-0371800-5**[7]**T. Naur,*Integer Factorization*, DAIMI PB-144, Dept. of Computer Science, University of Aarhus, Denmark, 1982.**[8]**J. M. Pollard,*Theorems on factorization and primality testing*, Proc. Cambridge Philos. Soc.**76**(1974), 521–528. MR**0354514****[9]**J. M. Pollard,*A Monte Carlo method for factorization*, Nordisk Tidskr. Informationsbehandling (BIT)**15**(1975), no. 3, 331–334. MR**0392798****[10]**J. M. Pollard, Letter of July 27, 1982.**[11]**B. D. Shriver & P. Kornerup,*A Description of the MATHILDA Processor*, DAIMI PB-52, Dept. of Computer Science, University of Aarhus, Denmark, 1975.**[12]**S. S. Wagstaff, Letters of July 20 and 26, 1982.**[13]**H. C. Williams,*A 𝑝+1 method of factoring*, Math. Comp.**39**(1982), no. 159, 225–234. MR**658227**, https://doi.org/10.1090/S0025-5718-1982-0658227-7**[14]**H. C. Williams and R. Holte,*Some observations on primality testing*, Math. Comp.**32**(1978), no. 143, 905–917. MR**0476625**, https://doi.org/10.1090/S0025-5718-1978-0476625-0**[15]**H. C. Williams and J. S. Judd,*Determination of the primality of 𝑁 by using factors of 𝑁²±1*, Math. Comp.**30**(1976), no. 133, 157–172. MR**0396390**, https://doi.org/10.1090/S0025-5718-1976-0396390-3**[16]**H. C. Williams and J. S. Judd,*Some algorithms for prime testing using generalized Lehmer functions*, Math. Comp.**30**(1976), no. 136, 867–886. MR**0414473**, https://doi.org/10.1090/S0025-5718-1976-0414473-6**[17]**H. C. Williams and E. Seah,*Some primes of the form (𝑎ⁿ-1)/(𝑎-1)*, Math. Comp.**33**(1979), no. 148, 1337–1342. MR**537980**, https://doi.org/10.1090/S0025-5718-1979-0537980-7**[18]**M. C. Wunderlich & J. L. Selfridge, "A design for a number theory package with an optimized trial division routine,"*Comm. ACM.*, v. 17, 1974, pp. 272-276.

Retrieve articles in *Mathematics of Computation*
with MSC:
11Y05

Retrieve articles in all journals with MSC: 11Y05

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1983-0717713-2

Article copyright:
© Copyright 1983
American Mathematical Society