Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Mathematics of Computation
Mathematics of Computation
ISSN 1088-6842(online) ISSN 0025-5718(print)

Integer points on $ y\sp{2}=x\sp{3}-7x+10$


Authors: Andrew Bremner and Nicholas Tzanakis
Journal: Math. Comp. 41 (1983), 731-741
MSC: Primary 11D25; Secondary 14K07
MathSciNet review: 717717
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The 26 integer solutions of $ {y^2} = {x^3} - 7x + 10$ are found and an error in a published table of fundamental units is corrected.


References [Enhancements On Off] (What's this?)

  • [1] W. E. H. Berwick, "Algebraic number fields with two independent units," Proc. London Math. Soc. v. 34, 1932, pp. 360-378.
  • [2] G. Billing, "Beiträge zur arithmetischen Theorie der ebenen kubischen Kurven vom Geschlecht eins," Nova Acta Reg. Soc. Scient. Upsaliensis, Ser. IV, v. 11, 1938.
  • [3] B. J. Birch and W. Kuyk (eds.), Modular functions of one variable. IV, Lecture Notes in Mathematics, Vol. 476, Springer-Verlag, Berlin, 1975. MR 0376533 (51 #12708)
  • [4] B. J. Birch and H. P. F. Swinnerton-Dyer, Notes on elliptic curves. I, J. Reine Angew. Math. 212 (1963), 7–25. MR 0146143 (26 #3669)
  • [5] Arne J. Brentjes, A two-dimensional continued fraction algorithm for best approximations with an application in cubic number fields, J. Reine Angew. Math. 326 (1981), 18–44. MR 622343 (83b:10037), http://dx.doi.org/10.1515/crll.1981.326.18
  • [6] J. W. S. Cassels, Diophantine equations with special reference to elliptic curves, J. London Math. Soc. 41 (1966), 193–291. MR 0199150 (33 #7299)
  • [7] A. O. L. Atkin and B. J. Birch (eds.), Computers in number theory, Academic Press, London, 1971. MR 0314733 (47 #3285)
  • [8] B. N. Delone and D. K. Faddeev, The theory of irrationalities of the third degree, Translations of Mathematical Monographs, Vol. 10, American Mathematical Society, Providence, R.I., 1964. MR 0160744 (28 #3955)
  • [9] Raphael Finkelstein and Hymie London, On Mordell’s equation 𝑦²-𝑘=𝑥³: An interesting case of Sierpiński, J. Number Theory 2 (1970), 310–321. MR 0268120 (42 #3019)
  • [10] Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York, 1977. Graduate Texts in Mathematics, No. 52. MR 0463157 (57 #3116)
  • [11] Serge Lang, Elliptic curves: Diophantine analysis, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 231, Springer-Verlag, Berlin, 1978. MR 518817 (81b:10009)
  • [12] Serge Lang, Conjectured Diophantine estimates on elliptic curves, Arithmetic and geometry, Vol. I, Progr. Math., vol. 35, Birkhäuser Boston, Boston, MA, 1983, pp. 155–171. MR 717593 (85d:11024)
  • [13] W. Ljunggren, On the diophantine equation 𝑦²-𝑘=𝑥³, Acta Arith. 8 (1962/1963), 451–463. MR 0158859 (28 #2082)
  • [14] Jean-François Mestre, Construction d’une courbe elliptique de rang ≥12, C. R. Acad. Sci. Paris Sér. I Math. 295 (1982), no. 12, 643–644 (French, with English summary). MR 688896 (84b:14019)
  • [15] L. J. Mordell, Diophantine equations, Pure and Applied Mathematics, Vol. 30, Academic Press, London, 1969. MR 0249355 (40 #2600)
  • [16] G. Sansone, "I punti di coordinate rationali e, in particolare, di coordinate intere della cubica ellittica $ {y^2} = {x^3} - x + 1$," Ann. Mat. Pura Appl. (4), v. 125, 1980, pp. 1-11.
  • [17] Th. Skolem, The use of a 𝑝-adic method in the theory of diophantine equations, Bull. Soc. Math. Belg. 1954 (1954), 83–95 (1955). MR 0072155 (17,237h)
  • [18] Th. Skolem, Ein Verfahren zur Behandlung gewisser exponentialer Gleichungen, 8de Skand. mat. Kongr., Stockholm, 1934.
  • [19] J. Tate, Algorithm for determining the type of a singular fiber in an elliptic pencil, Modular functions of one variable, IV (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), Springer, Berlin, 1975, pp. 33–52. Lecture Notes in Math., Vol. 476. MR 0393039 (52 #13850)
  • [20] N. Tzanakis, "The Diophantine equation $ {x^3} - 3x{y^2} - {y^3} = 1$ and related equations," J. Number Theory. (To appear.)
  • [21] A. Wiman, Über die Punkte mit ganzzahligen Koordinaten auf gewissen Kurven dritter Ordnung, Tolfte Skandinaviska Matematikerkongressen, Lund, 1953, Lunds Universitets Matematiska Institution, Lund, 1954, pp. 317–323 (German). MR 0065585 (16,450a)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 11D25, 14K07

Retrieve articles in all journals with MSC: 11D25, 14K07


Additional Information

DOI: http://dx.doi.org/10.1090/S0025-5718-1983-0717717-X
PII: S 0025-5718(1983)0717717-X
Article copyright: © Copyright 1983 American Mathematical Society