On optimal shooting intervals

Authors:
R. M. M. Mattheij and G. W. M. Staarink

Journal:
Math. Comp. **42** (1984), 25-40

MSC:
Primary 65L10

DOI:
https://doi.org/10.1090/S0025-5718-1984-0725983-0

MathSciNet review:
725983

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We develop an adaptive multiple shooting strategy, which is nearly optimal with respect to cpu time. Since the costs of integration are the most important components in this, we investigate in some detail how the gridpoints are chosen by an adaptive integration routine. We use this information to find out where the shooting points have to be selected. We also show that our final strategy is stable in the sense that rounding errors can be kept below a given tolerance. Finally we pay attention to the question how the need for memory can be minimized.

**[1]**B. Childs (ed.),*Codes for Boundary-Value Problems in Ordinary Equations*, Lecture Notes in Comput. Sci., Vol. 76, Springer-Verlag, Berlin, 1978.**[2]**P. Deuflhard,*Recent advances in multiple shooting techniques*, Academic Press, London-New York-Toronto, Ont., 1980, pp. 217–272. MR**582979****[3]**H.-J. Diekhoff, P. Lory, H.-J. Oberle, H.-J. Pesch, P. Rentrop, and R. Seydel,*Comparing routines for the numerical solution of initial value problems of ordinary differential equations in multiple shooting*, Numer. Math.**27**(1976/77), no. 4, 449–469. MR**0445845**, https://doi.org/10.1007/BF01399607**[4]**S. D. Conte,*The numerical solution of linear boundary value problems*, SIAM Rev.**8**(1966), 309–321. MR**0203945**, https://doi.org/10.1137/1008063**[5]**George E. Forsythe, Michael A. Malcolm, and Cleve B. Moler,*Computer methods for mathematical computations*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1977. Prentice-Hall Series in Automatic Computation. MR**0458783****[6]**John H. George and Robert W. Gunderson,*Conditioning of linear boundary value problems*, Nordisk Tidskr. Informationsbehandling (BIT)**12**(1972), 172–181. MR**0309317****[7]**J. Kautský and N. K. Nichols,*Equidistributing meshes with constraints*, SIAM J. Sci. Statist. Comput.**1**(1980), no. 4, 499–511. MR**610760**, https://doi.org/10.1137/0901036**[8]**Herbert B. Keller,*Numerical solution of two point boundary value problems*, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1976. Regional Conference Series in Applied Mathematics, No. 24. MR**0433897****[9]**R. M. M. Mattheij,*The conditioning of linear boundary value problems*, SIAM J. Numer. Anal.**19**(1982), no. 5, 963–978. MR**672571**, https://doi.org/10.1137/0719070**[10]**R. M. M. Mattheij,*Estimates for the errors in the solutions of linear boundary value problems, due to perturbations*, Computing**27**(1981), no. 4, 299–318 (English, with German summary). MR**643401**, https://doi.org/10.1007/BF02277181**[11]**R. M. M. Mattheij,*Accurate estimates for the fundamental solutions of discrete boundary value problems*, J. Math. Anal. Appl.**101**(1984), no. 2, 444–464. MR**748581**, https://doi.org/10.1016/0022-247X(84)90112-4**[12]**R. M. M. Mattheij & G. W. M. Staarink, "An efficient algorithm for solving general linear two point boundary value problems,"*SIAM J. Sci. Statist. Comput.*, v. 4, 1983.**[13]**M. R. Osborne,*The stabilized march is stable*, SIAM J. Numer. Anal.**16**(1979), no. 6, 923–933. MR**551316**, https://doi.org/10.1137/0716068**[14]**V. Pereyra and E. G. Sewell,*Mesh selection for discrete solution of boundary problems in ordinary differential equations*, Numer. Math.**23**(1974/75), 261–268. MR**0464600**, https://doi.org/10.1007/BF01400309**[15]**R. D. Russell and J. Christiansen,*Adaptive mesh selection strategies for solving boundary value problems*, SIAM J. Numer. Anal.**15**(1978), no. 1, 59–80. MR**0471336**, https://doi.org/10.1137/0715004**[16]**Melvin R. Scott and Herman A. Watts,*Computational solution of linear two-point boundary value problems via orthonormalization*, SIAM J. Numer. Anal.**14**(1977), no. 1, 40–70. Papers on the numerical solution of two-point boundary-value problems (NSF-CBMS Regional Res. Conf., Texas Tech Univ., Lubbock, Tex., 1975). MR**0455425**, https://doi.org/10.1137/0714004**[17]**L. F. Shampine, H. A. Watts, and S. M. Davenport,*Solving nonstiff ordinary differential equations—the state of the art*, SIAM Rev.**18**(1976), no. 3, 376–411. MR**0413522**, https://doi.org/10.1137/1018075**[18]**Josef Stoer and Roland Bulirsch,*Einführung in die Numerische Mathematik. II*, Springer-Verlag, Berlin-New York, 1973. Unter Berücksichtigung von Vorlesungen von F. L. Bauer; Heidelberger Taschenbücher, Band 114. MR**0400617**

Retrieve articles in *Mathematics of Computation*
with MSC:
65L10

Retrieve articles in all journals with MSC: 65L10

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1984-0725983-0

Keywords:
Multiple shooting,
adaptive codes

Article copyright:
© Copyright 1984
American Mathematical Society