Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



An analysis of the box and trapezoidal schemes for linear singularly perturbed boundary value problems

Author: Richard Weiss
Journal: Math. Comp. 42 (1984), 41-67
MSC: Primary 65L10; Secondary 34E15
MathSciNet review: 725984
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Stability and convergence results are derived for the box and trapezoidal schemes applied to boundary value problems for linear singularly perturbed first order systems of o.d.e.'s without turning points.

References [Enhancements On Off] (What's this?)

  • [1] L. R. Abrahamsson, Numerical Solution of a Boundary Value Problem in Semiconductor Physics, Report #81, Department of Computer Science, Uppsala University, 1979.
  • [2] L. R. Abrahamsson, H. B. Keller, and H. O. Kreiss, Difference approximations for singular perturbations of systems of ordinary differential equations, Numer. Math. 22 (1974), 367–391. MR 0388784
  • [3] U. Ascher, J. Christiansen, and R. D. Russell, A collocation solver for mixed order systems of boundary value problems, Math. Comp. 33 (1979), no. 146, 659–679. MR 521281, 10.1090/S0025-5718-1979-0521281-7
  • [4] U. Ascher & R. Weiss, Collocation for Singular Perturbation Problems I: First Order Systems With Constant Coefficients, Report 81-2, Department of Computer Science, The University of British Columbia, 1981.
  • [5] Carl de Boor, Corrigenda: “Efficient computer manipulation of tensor products” (ACM Trans. Math. Software 5 (1979), no. 2, 173–182), ACM Trans. Math. Software 5 (1979), no. 4, 525. MR 551750, 10.1145/355853.355872
  • [6] Heinz-Otto Kreiss and Nancy Nichols, Numerical methods for singular perturbation problems, Computing methods in applied sciences (Second Internat. Sympos.,Versailles, 1975) Springer, Berlin, 1976, pp. 544–558. Lecture Notes in Phys., Vol. 58. MR 0445849
  • [7] M. Maier, Die numerische Lösung von Halbleitermodellen mit Hilfe des Kollokationsverfahrens PITHOP unter Verwendung einer automatischen Schrittweitenkontrolle, Master's thesis, Department of Mathematics, Technical University München, 1979.
  • [8] Robert E. O’Malley Jr., Introduction to singular perturbations, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1974. Applied Mathematics and Mechanics, Vol. 14. MR 0402217
  • [9] Ch. Ringhofer, On Collocation Schemes for Quasilinear Singularly Perturbed Boundary Value Problems, Doctoral thesis, Department of Applied Mathematics and Numerical Analysis, Technical University of Vienna, 1981.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65L10, 34E15

Retrieve articles in all journals with MSC: 65L10, 34E15

Additional Information

Article copyright: © Copyright 1984 American Mathematical Society