Implicit Runge-Kutta methods of optimal order for Volterra integro-differential equations

Author:
Hermann Brunner

Journal:
Math. Comp. **42** (1984), 95-109

MSC:
Primary 65R20; Secondary 45J05, 45L10

DOI:
https://doi.org/10.1090/S0025-5718-1984-0725986-6

MathSciNet review:
725986

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Implicit Runge-Kutta methods with *m* stages and optimal order for the approximate solution of Volterra integro-differential equations can be viewed as fully discretized collocation methods in certain polynomial spline spaces. The choice of the quadrature formulas needed for the full discretization of the collocations is investigated, and it is shown that, in contrast to ordinary differential equations, there exist (for fixed *m*) several optimal methods.

**[1]**C. T. H. Baker, "Initial value problems for Volterra integro-differential equations," in*Modern Numerical Methods for Ordinary Differential Equations*(G. Hall and J. M. Watt, eds.), Clarendon Press, Oxford, 1976, p. 296-307.**[2]**H. Brunner,*On the numerical solution of nonlinear Volterra integro-differential equations*, Nordisk Tidskr. Informationsbehandling (BIT)**13**(1973), 381–390. MR**0331829****[3]**Hermann Brunner,*The application of the variation of constants formulas in the numerical analysis of integral and integro-differential equations*, Utilitas Math.**19**(1981), 255–290. MR**624058****[4]**H. Brunner and J. D. Lambert,*Stability of numerical methods for Volterra integro-differential equations*, Computing (Arch. Elektron. Rechnen)**12**(1974), no. 1, 75–89 (English, with German summary). MR**0418490****[5]**Colin W. Cryer,*Numerical methods for functional differential equations*, Delay and functional differential equations and their applications (Proc. Conf., Park City, Utah, 1972) Academic Press, New York, 1972, pp. 17–101. MR**0388820****[6]**Alan Feldstein and John R. Sopka,*Numerical methods for nonlinear Volterra integro-differential equations*, SIAM J. Numer. Anal.**11**(1974), 826–846. MR**0375816**, https://doi.org/10.1137/0711067**[7]**A. Ghizzetti and A. Ossicini,*Quadrature formulae*, Academic Press, New York, 1970. MR**0269116****[8]**A. Guillou and J. L. Soulé,*La résolution numérique des problèmes différentiels aux conditions initiales par des méthodes de collocation*, Rev. Française Informat. Recherche Opérationnelle**3**(1969), no. Sér. R-3, 17–44 (French). MR**0280008****[9]**Eugene Isaacson and Herbert Bishop Keller,*Analysis of numerical methods*, John Wiley & Sons, Inc., New York-London-Sydney, 1966. MR**0201039****[10]**C. Lubich,*Numerische Behandlung Volterra'scher Integrodifferentialgleichungen*, Diploma Thesis, University of Innsbruck, 1981.**[11]**C. Lubich,*Runge-Kutta Theory for Volterra Integrodifferential Equations*, Preprint No. 131, Sonderforschungsbereich 123, University of Heidelberg, 1981.**[12]**Athena Makroglou,*Convergence of a block-by-block method for nonlinear Volterra integro-differential equations*, Math. Comp.**35**(1980), no. 151, 783–796. MR**572856**, https://doi.org/10.1090/S0025-5718-1980-0572856-9**[13]**William L. Mocarsky,*Convergence of step-by-step methods for non-linear integro-differential equations*, J. Inst. Math. Appl.**8**(1971), 235–239. MR**0287734****[14]**Syvert P. Nørsett,*Collocation and perturbed collocation methods*, Numerical analysis (Proc. 8th Biennial Conf., Univ. Dundee, Dundee, 1979), Lecture Notes in Math., vol. 773, Springer, Berlin, 1980, pp. 119–132. MR**569466****[15]**S. P. Nørsett and G. Wanner,*The real-pole sandwich for rational approximations and oscillation equations*, BIT**19**(1979), no. 1, 79–94. MR**530118**, https://doi.org/10.1007/BF01931224

Retrieve articles in *Mathematics of Computation*
with MSC:
65R20,
45J05,
45L10

Retrieve articles in all journals with MSC: 65R20, 45J05, 45L10

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1984-0725986-6

Keywords:
Volterra integro-differential equations,
collocation methods,
implicit Runge-Kutta methods of optimal order

Article copyright:
© Copyright 1984
American Mathematical Society