Skip to Main Content

Mathematics of Computation

Published by the American Mathematical Society since 1960 (published as Mathematical Tables and other Aids to Computation 1943-1959), Mathematics of Computation is devoted to research articles of the highest quality in computational mathematics.

ISSN 1088-6842 (online) ISSN 0025-5718 (print)

The 2020 MCQ for Mathematics of Computation is 1.78.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Approximation of complex harmonic functions by complex harmonic splines
HTML articles powered by AMS MathViewer

by Han Lin Chen and Tron Hvaring PDF
Math. Comp. 42 (1984), 151-164 Request permission

Abstract:

In this paper, a class of complex harmonic spline functions (C.H.S.) are defined on the unit disc U. We use the C.H.S. to approximate the complex harmonic function on U, showing that C.H.S. may be represented by elementary functions. If the maximum step tends to zero and the mesh ratio is bounded, then C.H.S. converge uniformly to the interpolated function F on the closed disc Ū. If the interpolated function F is a conformal mapping, then the C.H.S. is a quasi-conformal mapping.
References
  • J. H. Ahlberg, E. N. Nilson, and J. L. Walsh, Complex cubic splines, Trans. Amer. Math. Soc. 129 (1967), 391–413. MR 217484, DOI 10.1090/S0002-9947-1967-0217484-X
  • J. H. Ahlberg, Splines in the complex plane, Approximations with Special Emphasis on Spline Functions (Proc. Sympos. Univ. of Wisconsin, Madison, Wis., 1969) Academic Press, New York, 1969, pp. 1–27. MR 0257614
  • Chen Han-Lin, Complex Harmonic Splines, Interpolation and Approximation on the Unit Circle, Part II, Tech. Report, Math. and Comp. No. 3/81, ISBN 82-7151-039-8.
  • Han Lin Chen, Complex spline functions, Sci. Sinica 24 (1981), no. 2, 160–169. MR 626312
  • Chen Han-Lin & Tron Hvaring, A New Method for the Approximation of Conformal Mapping on the Unit Circle, Tech. Report, Math. and Comp. No. 6/82, ISBN 82-7151-049-5. L. Fejér, "Über Interpolation," Göttingen Nachr, 1916, pp. 66-91.
  • Dieter Gaier, Integralgleichungen erster Art und konforme Abbildung, Math. Z. 147 (1976), no. 2, 113–129. MR 396926, DOI 10.1007/BF01164277
  • M. A. Lawrentjew and B. W. Schabat, Methoden der komplexen Funktionentheorie, Mathematik für Naturwissenschaft und Technik, Band 13, VEB Deutscher Verlag der Wissenschaften, Berlin, 1967 (German). Übersetzung und wissenschaftliche Redaktion von Udo Pirl, Reiner Kühnau und Lothar Wolfersdorf. MR 0209447
  • L. Reichel, On Polynomial Approximation in the Complex Plane with Application to Conformal Mapping, TRITA-Na-8102, Dept. Comput. Sci., Royal Institute of Technology, Stockholm. L. Reichel, On the Determination of Boundary Collocation Points for Solving some Problems for the Laplace Operator, TRITA-NA-8006, Dept. Comput. Sci., Royal Institute of Technology, Stockholm.
  • A. Sharma and A. Meir, Degree of approximation of spline interpolation, J. Math. Mech. 15 (1966), 759–767. MR 0194800
  • M. Tsuji, Potential theory in modern function theory, Maruzen Co. Ltd., Tokyo, 1959. MR 0114894
Similar Articles
Additional Information
  • © Copyright 1984 American Mathematical Society
  • Journal: Math. Comp. 42 (1984), 151-164
  • MSC: Primary 30C30; Secondary 30E10, 41A15
  • DOI: https://doi.org/10.1090/S0025-5718-1984-0725990-8
  • MathSciNet review: 725990