A termination criterion for iterative methods used to find the zeros of polynomials

Author:
Masao Igarashi

Journal:
Math. Comp. **42** (1984), 165-171

MSC:
Primary 65H05; Secondary 65G99

DOI:
https://doi.org/10.1090/S0025-5718-1984-0725991-X

MathSciNet review:
725991

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A new criterion for terminating iterations when searching for polynomial zeros is described. This method does not depend on the number of digits in the mantissa; moreover, it can be used to determine the accuracy of the resulting zeros. Examples are included.

**[1]**Shin-ichiro Yamashita and Seiya Satake,*On the calculation limit of roots of algebraic equations*, Information Processing in Japan**7**(1967), 18–23. MR**0235724****[2]**S. Hirano,*Numerical Solution of Algebraic Equations by Floating-Point Arithmetic*, Thesis, Nihon Univ., 1980.**[3]**G. Peters and J. H. Wilkinson,*Practical problems arising in the solution of polynomial equations*, J. Inst. Math. Appl.**8**(1971), 16–35. MR**0298931****[4]**Masao Igarashi,*Zeros of polynomial and an estimation of its accuracy*, J. Inform. Process.**5**(1982), no. 3, 172–175. MR**686680****[5]**Immo O. Kerner,*Ein Gesamtschrittverfahren zur Berechnung der Nullstellen von Polynomen*, Numer. Math.**8**(1966), 290–294 (German). MR**0203931**, https://doi.org/10.1007/BF02162564**[6]**Oliver Aberth,*Iteration methods for finding all zeros of a polynomial simultaneously*, Math. Comp.**27**(1973), 339–344. MR**0329236**, https://doi.org/10.1090/S0025-5718-1973-0329236-7**[7]**Brian T. Smith,*Error bounds for zeros of a polynomial based upon Gerschgorin’s theorems*, J. Assoc. Comput. Mach.**17**(1970), 661–674. MR**0279998**, https://doi.org/10.1145/321607.321615

Retrieve articles in *Mathematics of Computation*
with MSC:
65H05,
65G99

Retrieve articles in all journals with MSC: 65H05, 65G99

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1984-0725991-X

Keywords:
Algebraic equation,
zeros of polynomials,
round-off errors

Article copyright:
© Copyright 1984
American Mathematical Society