Chebyshev quadrature rules for a new class of weight functions

Authors:
Paul F. Byrd and Lawrence Stalla

Journal:
Math. Comp. **42** (1984), 173-181

MSC:
Primary 65D32

DOI:
https://doi.org/10.1090/S0025-5718-1984-0725992-1

MathSciNet review:
725992

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Proof is given that the weight functions on (0, 1) admit Chebyshev quadratures for any fixed , and every *N*. For the particular cases when and , the nodes are tabulated to ten decimal places for *N*-point rules with , and 12. Numerical tables are also given for a coefficient in the expression of the error term.

**[1]**David K. Kahaner & J. L. Ullman, "Equal weight quadrature on infinite intervals,"*SIAM J. Numer. Anal.*, v. 8, no. 1, March 1971, pp. 75-79. MR**0287699 (44:4902)****[2]**H. S. Wilf, "The possibility of Tschebycheff quadrature on infinite intervals,"*Proc. Nat. Acad. Sci., U.S.A.*, v. 47, 1961, pp. 209-213. MR**0125380 (23:A2683)****[3]**J. L. Ullman, "Chebyshev quadrature on the infinite interval,"*Trans. Amer. Math. Soc.*, v. 107, 1963, pp. 291-299. MR**0147817 (26:5330)****[4]**S. N. Bernstein, "On a system of indeterminate equations,"*Collected Works*, vol. 2,*The Constructive Theory of Functions*, Izdat. Akad. Nauk SSSR, Moscow, 1954, pp. 236-242.**[5]**J. L. Ullman, "A class of weight functions that admit Chebyshev quadratures,"*Michigan Math. J.*, v. 13, 1966, pp. 417-423. MR**0205463 (34:5290)****[6]**P. L. Chebyshev, "Sur les quadratures,"*J. Math. Pures Appl.*(2), v. 19, 1874, pp. 19-34.*Oeuvres*, Vol. II, Chelsea, New York, 1962, pp. 165-180.**[7]**V. I. Krylov,*Approximate Calculation of Integrals*, Macmillan, New York, 1962. MR**0144464 (26:2008)****[8]**Z. Kopal,*Numerical Analysis*, Wiley, New York, 1955. MR**0077213 (17:1007c)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65D32

Retrieve articles in all journals with MSC: 65D32

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1984-0725992-1

Keywords:
Quadrature rules

Article copyright:
© Copyright 1984
American Mathematical Society