Some Inequalities for Elementary Mean Values

By Burnett Meyer

Abstract. Upper and lower bounds for the difference between the arithmetic and harmonic means of \(n \) positive numbers are obtained in terms of \(n \) and the largest and smallest of the numbers. Also, results of S. H. Tung [2], are used to obtain upper and lower bounds for the elementary mean values \(M_p \) of Hardy, Littlewood, and Pólya.

1. In 1975, S. H. Tung proved the following theorem [2]:

Let \(0 < b = x_1 \leq x_2 \leq \cdots \leq x_n = B \). Let \(A \) and \(G \) be the arithmetic and geometric means, respectively, of \(x_1, \ldots, x_n \). Then

\[
\frac{n}{n-1} \left(B^{1/2} - b^{1/2} \right)^2 \leq A - G \leq g(b, B),
\]

where \(g(b, B) = cb + (1 - c)B - b'B^{1-c} \), and

\[
c = \frac{\log((b/B - b) \log B/b)}{\log B/b}.
\]

We will derive somewhat similar bounds for the difference between the arithmetic and the harmonic means of \(n \) positive numbers.

2. In [1, Chapter 2] Hardy, Littlewood, and Pólya discussed the elementary mean values, which are defined as follows:

Let \(x_1, x_2, \ldots, x_n \) be positive numbers, and let \(p \) be a real number. Then \(M_p(x_1, \ldots, x_n) \) is defined as \([n^{-1} \sum_{k=1}^{n} x_k^p]^{1/p} \), if \(p \neq 0 \); \(M_0(x_1, \ldots, x_n) \) is defined as \((\prod_{k=1}^{n} x_k)^{1/n} \). We denote \(M_1 \), the arithmetic mean, by \(A \); \(M_0 \), the geometric mean, by \(G \); and \(M_{-1} \), the harmonic mean, by \(H \). Since \(M_p(kx_1, \ldots, kx_n) = kM_p(x_1, \ldots, x_n) \) for all \(p \) and for all \(k > 0 \), we may, without loss of generality, assume \(x_1 = 1 \).

Theorem 1. Let \(1 = x_1 \leq x_2 \leq \cdots \leq x_n = B \). Then

\[
\frac{(B - 1)^2}{n(n + 1)} \leq A(1, \ldots, B) - H(1, \ldots, B) \leq (B^{1/2} - 1)^2.
\]

Proof. For each \(k, 2 \leq k \leq n, \) let

\[
A_k = A(x_1, x_2, \ldots, x_{k-1}, x_k) \quad \text{and} \quad H_k = H(x_1, x_2, \ldots, x_{k-1}, x_k).
\]

Fix \(x_1, x_2, \ldots, x_{n-2}, x_n \), and let \(x_{n-1} = x \) vary in \([1, B]\). Let

\[
D(x) = A_n - H_n = \frac{(n-1)A_{n-1} + x}{n} - H_n - \frac{nxH_{n-1}}{(n-1)x + H_{n-1}}.
\]

Computation of \(D'(x) \) shows that \(x = H_{n-1} \) is its only positive zero, and standard methods of analysis show that a minimum for \(D(x) \) is attained at \(x = H_{n-1} \).
Therefore,

\[A_n - H_n \geq D(H_n^{-1}) = n^{-1}(n - 1)(A_{n-1} - H_{n-1}). \]

This process may be repeated, giving

\[A_n - H_n \geq \frac{n - 1}{n} (A_{n-1} - H_{n-1}) \geq \frac{n - 2}{n} (A_{n-2} - H_{n-2}) \]

\[\geq \cdots \geq \frac{2}{n} (A_2 - H_2) = \frac{(B - 1)^2}{n(B + 1)}. \]

The maximum of \(D(x) \) must occur at an endpoint, 1 or \(B \), as each of the variables \(x_2, x_3, \ldots, x_n \) in turn varies from 1 to \(B \). So

\[A_n - H_n \leq \frac{nB - (B - 1)k}{n} - \frac{nB}{(B - 1)k + n} = F(k), \]

for some \(k, 0 \leq k \leq n \). The maximum of \(F(x) \) on \([0, n]\) will, then, be an upper bound for \(A_n - H_n \). Again, computation of \(F'(x) \) and standard methods of analysis show that a maximum is attained for \(x = n(B^{1/2} - 1)/(B - 1) \). Hence

\[A_n - H_n \leq F(n(B^{1/2} - 1)/(B - 1)) = (B^{1/2} - 1)^2. \]

This completes the proof of Theorem 1.

Upper and lower bounds for \(G_n - H_n \) may be obtained using Theorem 1 and Tung's Theorem, since

\[G_n - H_n = (A_n - H_n) - (A_n - G_n). \]

3. Tung's Theorem may be used to obtain upper and lower bounds for the elementary mean values \(M_p \), by using the relation

\[M_p(x_1, \ldots, x_n) = \langle A(x_1^p, \ldots, x_n^p) \rangle^{1/p}. \]

(See [1].)

Theorem 2. Let \(1 = x_1 \leq x_2 \leq \cdots \leq x_n = B \), and let \(p > 0 \). Then

\[\left[n^{-1}(B^{p/2} - 1)^2 + G^p \right]^{1/p} \leq M_p(1, \ldots, B) \leq \left[g(1, B^p) + G^p \right]^{1/p}, \]

where \(G = G(1, \ldots, B) \), and \(g \) is the function defined in Tung's Theorem.

Theorem 3. Let \(1 = x_1 \leq x_2 \leq \cdots, x_n = B \), and let \(p < 0 \). Then

\[\left[g(B^p, 1) + G^p \right]^{1/p} \leq M_p(1, \ldots, B) \leq \left[n^{-1}(1 - B^{p/2})^2 + G^p \right]^{1/p}, \]

where \(G = G(1, \ldots, B) \) and \(g \) is the function of Tung's Theorem.

Department of Mathematics
University of Colorado
Boulder, Colorado 80309