Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Mathematics of Computation
Mathematics of Computation
ISSN 1088-6842(online) ISSN 0025-5718(print)

 

A series expansion for the first positive zero of the Bessel functions


Author: R. Piessens
Journal: Math. Comp. 42 (1984), 195-197
MSC: Primary 33A40; Secondary 65D20
MathSciNet review: 725995
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that the first positive zero $ {j_{v,l}}$ of the Bessel function $ {J_v}(x)$ is given by

$\displaystyle {j_{v,l}} = 2{(v + 1)^{1/2}}\left[ {1 + \frac{{(v + 1)}}{4} - \fr... ...(v + 1)}^3}}}{{1152}} - \frac{{8363{{(v + 1)}^4}}}{{276480}} + \cdots } \right]$

for $ - 1 < v < 0$.

References [Enhancements On Off] (What's this?)

  • [1] M. Abramowitz & I. Stegun, Handbook of Mathematical Functions, Dover, New York, 1965.
  • [2] M. Branders, R. Piessens & M. De Meue, "Rational approximations for zeros of Bessel functions," J. Comput. Phys., v. 42, 1981, pp. 403-405.
  • [3] A. Cayley, "Addition to Lord Rayleigh's paper: On the numerical calculation of the roots of fluctuating functions," Proc. London Math. Soc., v. 5, 1873-1874, pp. 123-124.
  • [4] Ll. G. Chambers, An upper bound for the first zero of Bessel functions, Math. Comp. 38 (1982), no. 158, 589–591. MR 645673 (83h:33011), http://dx.doi.org/10.1090/S0025-5718-1982-0645673-0
  • [5] A. C. Hearn, REDUCE 2--A System and Language for Algebraic Manipulation, Proc. Second Sympos. on Symbolic and Algebraic Manipulation, Los Angeles, 1971, pp. 128-133.
  • [6] Bessel functions. Part III: Zeros and associated values, Royal Society Mathematical Tables, Vol. 7. Prepared under the direction of the Bessel Functions Panel of the Mathematical Tables Committee, Cambridge University Press, New York, 1960. MR 0119441 (22 #10202)
  • [7] N. M. Temme, "An algorithm with ALGOL 60 program for the computation of the zeros of ordinary Bessel functions and those of their derivatives," J. Comput. Phys., v. 32, 1979, pp. 270-279.
  • [8] Francesco G. Tricomi, Vorlesungen über Orthogonalreihen, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Bd. LXXVI, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1955 (German). MR 0070746 (17,30a)
  • [9] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, England; The Macmillan Company, New York, 1944. MR 0010746 (6,64a)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 33A40, 65D20

Retrieve articles in all journals with MSC: 33A40, 65D20


Additional Information

DOI: http://dx.doi.org/10.1090/S0025-5718-1984-0725995-7
PII: S 0025-5718(1984)0725995-7
Article copyright: © Copyright 1984 American Mathematical Society