Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



A series expansion for the first positive zero of the Bessel functions

Author: R. Piessens
Journal: Math. Comp. 42 (1984), 195-197
MSC: Primary 33A40; Secondary 65D20
MathSciNet review: 725995
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that the first positive zero $ {j_{v,l}}$ of the Bessel function $ {J_v}(x)$ is given by

$\displaystyle {j_{v,l}} = 2{(v + 1)^{1/2}}\left[ {1 + \frac{{(v + 1)}}{4} - \fr... ...(v + 1)}^3}}}{{1152}} - \frac{{8363{{(v + 1)}^4}}}{{276480}} + \cdots } \right]$

for $ - 1 < v < 0$.

References [Enhancements On Off] (What's this?)

  • [1] M. Abramowitz & I. Stegun, Handbook of Mathematical Functions, Dover, New York, 1965.
  • [2] M. Branders, R. Piessens & M. De Meue, "Rational approximations for zeros of Bessel functions," J. Comput. Phys., v. 42, 1981, pp. 403-405.
  • [3] A. Cayley, "Addition to Lord Rayleigh's paper: On the numerical calculation of the roots of fluctuating functions," Proc. London Math. Soc., v. 5, 1873-1874, pp. 123-124.
  • [4] Ll. G. Chambers, An upper bound for the first zero of Bessel functions, Math. Comp. 38 (1982), no. 158, 589–591. MR 645673,
  • [5] A. C. Hearn, REDUCE 2--A System and Language for Algebraic Manipulation, Proc. Second Sympos. on Symbolic and Algebraic Manipulation, Los Angeles, 1971, pp. 128-133.
  • [6] Bessel functions. Part III: Zeros and associated values, Royal Society Mathematical Tables, Vol. 7. Prepared under the direction of the Bessel Functions Panel of the Mathematical Tables Committee, Cambridge University Press, New York, 1960. MR 0119441
  • [7] N. M. Temme, "An algorithm with ALGOL 60 program for the computation of the zeros of ordinary Bessel functions and those of their derivatives," J. Comput. Phys., v. 32, 1979, pp. 270-279.
  • [8] Francesco G. Tricomi, Vorlesungen über Orthogonalreihen, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Bd. LXXVI, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1955 (German). MR 0070746
  • [9] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, England; The Macmillan Company, New York, 1944. MR 0010746

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 33A40, 65D20

Retrieve articles in all journals with MSC: 33A40, 65D20

Additional Information

Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society