Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

A series expansion for the first positive zero of the Bessel functions


Author: R. Piessens
Journal: Math. Comp. 42 (1984), 195-197
MSC: Primary 33A40; Secondary 65D20
DOI: https://doi.org/10.1090/S0025-5718-1984-0725995-7
MathSciNet review: 725995
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that the first positive zero $ {j_{v,l}}$ of the Bessel function $ {J_v}(x)$ is given by

$\displaystyle {j_{v,l}} = 2{(v + 1)^{1/2}}\left[ {1 + \frac{{(v + 1)}}{4} - \fr... ...(v + 1)}^3}}}{{1152}} - \frac{{8363{{(v + 1)}^4}}}{{276480}} + \cdots } \right]$

for $ - 1 < v < 0$.

References [Enhancements On Off] (What's this?)

  • [1] M. Abramowitz & I. Stegun, Handbook of Mathematical Functions, Dover, New York, 1965.
  • [2] M. Branders, R. Piessens & M. De Meue, "Rational approximations for zeros of Bessel functions," J. Comput. Phys., v. 42, 1981, pp. 403-405.
  • [3] A. Cayley, "Addition to Lord Rayleigh's paper: On the numerical calculation of the roots of fluctuating functions," Proc. London Math. Soc., v. 5, 1873-1874, pp. 123-124.
  • [4] L. G. Chambers, "An upper bound for the first zero of Bessel functions," Math. Comp., v. 38, 1982, pp. 589-591. MR 645673 (83h:33011)
  • [5] A. C. Hearn, REDUCE 2--A System and Language for Algebraic Manipulation, Proc. Second Sympos. on Symbolic and Algebraic Manipulation, Los Angeles, 1971, pp. 128-133.
  • [6] F. W. J. Olver, Royal Society Mathematical Tables, Vol. 7, Bessel Functions. Part III. Zeros and Associated Values, The University Press, Cambridge, 1960. MR 0119441 (22:10202)
  • [7] N. M. Temme, "An algorithm with ALGOL 60 program for the computation of the zeros of ordinary Bessel functions and those of their derivatives," J. Comput. Phys., v. 32, 1979, pp. 270-279.
  • [8] F. G. Tricomi, Vorlesungen über Orthogonalreihen, Springer-Verlag, Berlin, 1955. MR 0070746 (17:30a)
  • [9] G. N. Watson, A Treatise on the Theory of Bessel Functions, The University Press, Cambridge, 1944. MR 0010746 (6:64a)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 33A40, 65D20

Retrieve articles in all journals with MSC: 33A40, 65D20


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1984-0725995-7
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society