Odd triperfect numbers

Author:
Masao Kishore

Journal:
Math. Comp. **42** (1984), 231-233

MSC:
Primary 11A25

DOI:
https://doi.org/10.1090/S0025-5718-1984-0725999-4

MathSciNet review:
725999

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that an odd triperfect number has at least ten distinct prime factors.

**[1]**W. McDaniel, "On odd multiply perfect numbers,"*Boll. Un. Mat. Ital.*, No. 2, 1970, pp. 185-190. MR**0262154 (41:6764)****[2]**G. L. Cohen, "On odd perfect numbers II, Multiperfect numbers and quasiperfect numbers,"*J. Austral. Math. Soc.*, v. 29, 1980, pp. 369-384. MR**569525 (81m:10009)****[3]**W. E. Beck & R. M. Najar, "A lower bound for odd triperfects,"*Math. Comp.*, v. 38, 1982, pp. 249-251. MR**637303 (83m:10006)****[4]**M. Kishore, "Odd integers*N*with five distinct prime factors for which ,"*Math. Comp.*, v. 32, 1978, pp. 303-309. MR**0485658 (58:5482a)**

Retrieve articles in *Mathematics of Computation*
with MSC:
11A25

Retrieve articles in all journals with MSC: 11A25

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1984-0725999-4

Article copyright:
© Copyright 1984
American Mathematical Society