On the equation
Authors:
A. Bremner and J. W. S. Cassels
Journal:
Math. Comp. 42 (1984), 257264
MSC:
Primary 11D25; Secondary 11G05, 14G05
MathSciNet review:
726003
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Generators are found for the group of rational points on the title curve for all primes less than 1,000. The rank is always 1 in accordance with conjectures of Selmer and Mordell. Some of the generators are rather large.
 [1]
B.
J. Birch and H.
P. F. SwinnertonDyer, Notes on elliptic curves. II, J. Reine
Angew. Math. 218 (1965), 79–108. MR 0179168
(31 #3419)
 [2]
J.
W. S. Cassels, Diophantine equations with special reference to
elliptic curves, J. London Math. Soc. 41 (1966),
193–291. MR 0199150
(33 #7299)
 [3]
L.
J. Mordell, The diophantine equation
𝑥⁴+𝑚𝑦⁴=𝑧²., Quart.
J. Math. Oxford Ser. (2) 18 (1967), 1–6. MR 0210659
(35 #1545)
 [4]
L.
J. Mordell, The diophantine equation
𝑦²=𝐷𝑥⁴+1, Number Theory (Colloq.,
János Bolyai Math. Soc., Debrecen, 1968), NorthHolland, Amsterdam,
1970, pp. 141–145. MR 0272711
(42 #7592)
 [5]
Ernst
S. Selmer, A conjecture concerning rational points on cubic
curves, Math. Scand. 2 (1954), 49–54. MR 0062767
(16,14g)
 [1]
 B. J. Birch & H. P. F. SwinnertonDyer, "Notes on elliptic curves II," J. Reine Angew. Math., v. 218, 1965, pp. 79108. MR 0179168 (31:3419)
 [2]
 J. W. S. Cassels, "Diophantine equations with special reference to elliptic curves," J. London Math. Soc., v. 41, 1966, pp. 193291. MR 0199150 (33:7299)
 [3]
 L. J. Mordell, "The diophantine equation ," Quart. J. Math. (2), v. 18, 1967, pp. 16. MR 0210659 (35:1545)
 [4]
 L. J. Mordell, , Number Theory Colloquium, János Bolyai Math. Soc., Debrecen, 1968, pp. 141145 (NorthHolland, Amsterdam, 1970). MR 0272711 (42:7592)
 [5]
 E. Selmer, "A conjecture concerning rational points on cubic curves," Math. Scand., v. 2, 1954, pp. 4954. MR 0062767 (16:14g)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
11D25,
11G05,
14G05
Retrieve articles in all journals
with MSC:
11D25,
11G05,
14G05
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718198407260034
PII:
S 00255718(1984)07260034
Article copyright:
© Copyright 1984
American Mathematical Society
