On the Existence and Computation of 
LU-Factorizations with Small Pivots*

By Tony F. Chan

Abstract. Let $A$ be an $n$ by $n$ matrix which may be singular with a one-dimensional null space, and consider the $LU$-factorization of $A$. When $A$ is exactly singular, we show conditions under which a pivoting strategy will produce a zero $n$th pivot. When $A$ is not singular, we show conditions under which a pivoting strategy will produce an $n$th pivot that is $O(\sigma_n)$ or $O(\kappa^{-1}(A))$, where $\sigma_n$ is the smallest singular value of $A$ and $\kappa(A)$ is the condition number of $A$. These conditions are expressed in terms of the elements of $A^{-1}$ in general but reduce to conditions on the elements of the singular vectors corresponding to $\sigma_n$ when $A$ is nearly or exactly singular. They can be used to build a 2-pass factorization algorithm which is guaranteed to produce a small $n$th pivot for nearly singular matrices. As an example, we exhibit an $LU$-factorization of the $n$ by $n$ upper triangular matrix

$$T = \begin{bmatrix}
1 & -1 & -1 & \cdots & -1 \\
1 & \ddots & \ddots & \ddots & \ddots \\
1 & \ddots & \ddots & \ddots & \ddots \\
0 & \ddots & \ddots & \ddots & \ddots \\
0 & \cdots & \cdots & \cdots & 1
\end{bmatrix}$$

that has an $n$th pivot equal to $2^{-n-2}$.

1. Introduction. The $LU$-factorization $PAQ = LU$ (in this paper, $P$ and $Q$ always denote permutation matrices, $L$ is always unit lower triangular and $U$ upper triangular) of a general $m$ by $n$ matrix $A$ plays an important role in computational linear algebra. It always exists and can be found efficiently by Gaussian Elimination or its variants. On the other hand, there may be many $LU$-factorizations for a given matrix. However, the $LU$-factorization is unique once the permutations $P$ and $Q$ are fixed. In this paper, we shall be concerned only with square $n$ by $n$ matrices, with primary interest on the nearly singular case. Specifically, we shall assume that $A$ has one eigenvalue that is small with respect to the others and that the associated eigenspace is one-dimensional. When $A$ is exactly singular, then any $LU$-factorization of $A$ has a zero on the diagonal of $U$ (i.e., a zero pivot). However, when $A$ is nearly singular, it is well known that $U$ may not have any small diagonal elements. Note that the diagonal elements of $U$ are the eigenvalues of $U$. Golub and Wilkinson [10] showed that the smallest eigenvalue $\lambda_n$ of any matrix can be bounded in terms

Received March 26, 1982; revised October 14, 1982.

1980 Mathematics Subject Classification. Primary 15A03, 15A09, 15A12, 65F05, 65F20, 65F35.
Key words and phrases. LU-factorizations, singular systems.

* This work was supported by the Department of Energy under grant DE-AC02-81ER10996.
of the singular values $\sigma_i$ as follows:

$$|\lambda_i| \leq \sigma_1 (\sigma_i/\sigma_1)^{1/n}.$$ 

and this bound is the best possible in general. Thus, although $(\sigma_n/\sigma_1)$ may be small, $\lambda_n$ may not be. In fact, a well-known example is the matrix $T$ defined earlier. For large $n$, $T$ is nearly singular, and both the partial and complete pivoting strategies will produce $T$ as the $U$ matrix in the LU-factorization of $T$. Obviously, there are no small elements on the diagonal of $T$.

In this paper, we show that, for any square matrix $A$, there always exists an LU-factorization with a ‘small’ element in the last position on the diagonal of $U$. Here ‘small’ means $u_{n,n} = O(\kappa^{-1}(A))$ or $O(\sigma_n)$, where $\kappa(A)$ is the condition number of $A$ in some norm, and $\sigma_n$ is the smallest singular value of $A$. (We shall use upper case letters for denoting matrices and the corresponding lower case with subscripts for denoting elements of matrices.) Thus, we can always find an LU-factorization with a $u_{n,n}$ that is as small as $A$ is nearly singular. For a given matrix, there may be many such LU-factorizations. We show conditions on $A$ which show how many of these factorizations are possible. These conditions are expressed in terms of the elements of $A^{-1}$ in general and reduce to conditions on the elements of the singular vectors corresponding to $\sigma_n$ when $A$ is nearly or exactly singular. These conditions also show that matrices which are nearly singular but which the commonly used pivoting strategies do not produce a small $u_{n,n}$ all have a very special pattern to their inverses and their smallest singular vectors. Moreover, simple permutations of these matrices will produce small pivots with the usual pivoting strategies. Therefore, they are in some sense rare and relatively harmless. Based on these conditions, we propose a 2-pass algorithm which is guaranteed to produce an LU-factorization of any given matrix with an $n$th pivot that is as small as $A$ is singular. The extra work involved is usually just a few more backsolves and at worst one more factorization. A related theoretical question is how to permute the rows and columns of a singular matrix $A$ so as to obtain LU-factorizations with $u_{n,n} = 0$. We show that these permutations can be expressed in terms of the positions of the nonzero elements of the smallest singular vectors of $A$ and are consistent with the conditions for producing small pivots of nearly singular matrices as these matrices tend to be exactly singular.

The existence of a small pivot reveals a great deal about the null space of $A$. Such a factorization can be used to determine the rank of $A$ and for determining the approximate left and right null vectors of $A$ without inverse iterations [12], [13]. It can be used to compute the pseudo-inverse of $A$ [18], to solve least squares problems [5], [19], [18] and to solve underdetermined linear systems [7]. Another important application is to computing deflated solutions and deflated decompositions of solutions of nearly singular linear systems [3], [13], [21] which arise in numerical continuation methods for solving nonlinear systems [2], [4], [14], [13], [15], [20], [22]. Many numerical methods have been proposed which are designed to exploit such LU-factorizations. Naturally, all of these methods depend on the ability of some procedures for producing such factorizations. Therefore, it is important to better understand both the theoretical questions of existence and the practical questions of computing such factorizations.
In Section 2, we motivate and outline the basic strategy used to find permutations \( P \) and \( Q \) such that there exist LU-factorizations for \( PAQ \). In Section 3, we treat the exactly singular case and in Section 4 we treat the nonsingular case. We present the 2-pass algorithm in Section 5. In Section 6, we use the conditions developed in Section 4 to explicitly construct for the matrix \( T \) an LU-factorization exhibiting a 
\[ u_{n,n} = 2^{-(n-2)} \]. In Section 7, we show actual numerical computations with the matrix \( T \) and another example of Wilkinson’s [23]. We conclude with a few remarks on possible extensions of this work in Section 8.

2. Existence. Throughout this paper, we shall assume that the rank of the \( n \) by \( n \) matrix \( A \) is either \( n \) or \( n - 1 \). The basic observation which allows the permutations \( P \) and \( Q \) to be computed is the result of the following lemma.

**Lemma 1.** (a) If \( A \) is nonsingular and \( PAQ \) has an LU-factorization of the form

\[
PAQ = \begin{bmatrix}
L & 0 \\
\epsilon^T & 1
\end{bmatrix}
\begin{bmatrix}
U_1 & w \\
0 & \epsilon
\end{bmatrix},
\]

then we can perturb the \((n, n)\)th element of \( PAQ \) by \( \epsilon \) to make it singular.

(b) If \( A \) is singular (with rank \( n - 1 \)) and \( PAQ \) has an LU-factorization of the form

\[(1)\]

with \( \epsilon = 0 \), then we can perturb the \((n, n)\)th element of \( PAQ \) to make \( A \) nonsingular.

**Proof.** Multiplying the factors in (1) will reveal that \( \epsilon \) only enters into the expression for the \((n, n)\)th element of \( PAQ \) and therefore changing \( \epsilon \) (to zero in (a) and to nonzero in (b)) will only affect the \((n, n)\)th element of \( PAQ \). Note that, for part (b), \( U_1 \) is necessarily nonsingular because the rank of \( A \) is \( n - 1 \).

Our strategy is based on the converse of Lemma 1, i.e., we want to find elements of \( A \) which can be perturbed alone to change the rank of \( A \) from either \( n \) to \( n - 1 \) or vice versa. For \( A \) nonsingular, we want to find elements which we can perturb by the smallest amount possible. We therefore make the following definition.

**Definition 2.** Let \( C_i = \{a_{i,j} | \text{Rank}(A) \text{ can be changed (from } n \text{ to } n - 1 \text{ or vice versa) by perturbing } a_{i,j} \text{ alone} \}. \)

Once these elements are found, we can then use permutation matrices \( P \) and \( Q \) to move them to the \((n, n)\)th position in \( PAQ \). Finally, we have to construct the desired LU-factorization of the permuted matrix. For this last step, we need the following lemma.

**Lemma 3.** Let \( A \), with rank \( \geq n - 1 \), be represented in the partitioned form:

\[
A = \begin{bmatrix}
S & q \\
p^T & d
\end{bmatrix},
\]

where \( S \) is \((n - 1) \times (n - 1)\) and \( p \) and \( q \) are vectors. Then we can change the rank of \( A \) (from \( n \) to \( n - 1 \) or vice versa) by perturbing the element \( d \) if and only if \( S \) is nonsingular.

**Proof.** By the cofactor expansion, the determinant of \( A \), denoted by \( \det(A) \), is equal to \( d \) times \( \det(S) \) plus terms independent of \( d \). The fact that we can change the rank of \( A \) from \( n \) to \( n - 1 \) or vice versa by changing \( d \) means that \( \det(S) \) has to be
nonzero. On the other hand, if \( \det(S) = 0 \), then we can change \( d \) to make the product \( d \det(S) \) cancel the rest of the terms to make \( A \) singular.

With this lemma, we can now show how to permute the rows and columns of \( A \) so that the resulting matrix has an \( LU \)-factorization.

**Lemma 4.** If \( P \) and \( Q \) permute an element of \( C \) to the \( (n, n) \)th position of \( PAQ \), then we can construct permutation matrices \( P_1 \) and \( Q_1 \) which leave the \( (n, n) \)th position of \( PAQ \) unchanged, such that \( P_1PAQQ_1 \) has an \( LU \)-factorization, with \( u_{n,n} = 0 \) if \( A \) has rank \( n - 1 \).

**Proof.** Write \( PAQ \) in the form of (2). Then by Lemma 3, \( S \) is nonsingular. Therefore, \( S \) has an \( LU \)-factorization \( P_5SQ_S = L_5U_5 \), where \( U_5 \) has nonzero diagonal elements. It can then be easily verified that, with \( P_1 \) defined as \( P_5 \) applied to the first \( n - 1 \) rows and \( Q_1 \) defined as \( Q_S \) applied to the first \( n - 1 \) columns, \( P_1PAQQ_1 \) has the following \( LU \)-factorization:

\[
P_1PAQQ_1 = \begin{bmatrix} L_5 & 0 \\ p^T U_5^{-1} & 1 \end{bmatrix} \begin{bmatrix} U_5 & L_5^{-1}q \\ 0 & u_{n,n} \end{bmatrix}.
\]

where \( u_{n,n} = d - p^T U_5^{-1} L_5^{-1}q \) and the permutations \( P_5 \) and \( Q_S \) are assumed to have been applied to \( p \) and \( q \). Note that if \( A \) is exactly singular, then \( u_{n,n} \) must be zero.

Now it is natural to make the following definition.

**Definition 5.** We say that a matrix has a generalized \( LU \)-factorization if an \( LU \)-factorization for it can be constructed by permuting only its first \( n - 1 \) rows and columns.

Now we can state our basic theorem on the existence of an \( LU \)-factorization for \( PAQ \).

**Theorem 6.** \( PAQ \) has a generalized \( LU \)-factorization if and only if \( P \) and \( Q \) permute an element of \( C \) to the \( (n, n) \)th position of \( PAQ \).

**Proof.** The \( if \) part is exactly Lemma 4. The \( only if \) part is exactly Lemma 1.

3. The Singular Case. Let \( A \) be a singular matrix with a one-dimensional null space. In this section, we show how to find permutations \( P \) and \( Q \) such that \( PAQ \) has an \( LU \)-factorization with \( u_{n,n} = 0 \). Note that, by Lemma 4 and Theorem 6, we only have to find the elements of \( C \).

**Definition 7.** Let the Singular Value Decomposition (SVD) of \( A \) be \( A = X\Sigma Y^T \), where \( X \) and \( Y \) are unitary matrices, and let the columns of \( X \) be \( \{x_1, \ldots, x_n\} \) and the columns of \( Y \) be \( \{y_1, \ldots, y_n\} \) and \( \Sigma = \text{Diagonal}(\sigma_1, \ldots, \sigma_n) \).

Note that if \( A \) is singular, then \( \sigma_n = 0 \) and \( x_n \) and \( y_n \) are the left and right null vectors of \( A \), respectively.

We need a preliminary lemma.

**Lemma 8.** Let \( D = \text{Diagonal}(d_1, \ldots, d_{n-1}, 0) \), and \( v \) and \( w \) be arbitrary vectors. Then the following identities hold.

(a) \( \det(I + vw^T) = 1 + w^Tv \).

(b) \( \det(D + vw^T) = (\prod_{i=1}^{n-1} d_i) v_n w_n \).

**Proof.** See Appendix.
The next lemma shows that $C_1$ is related to the nonzero elements of the singular vectors corresponding to $\sigma_n$. We shall use the notation $(v)_k$ to denote the $k$th element of the vector $v$.

**Definition 9.** Define $C_2 = \{a_{i,j}(x_n)_i(y_n)_j \neq 0\}$.

**Lemma 10.** If $A$ is singular and has a one-dimensional null space, then $C_1 = C_2$ and is nonempty.

**Proof.** Consider perturbing the $(i, j)$th element of $A$ by $\delta$. We have

$$
\det(A + \delta e_i e_j^T) = \det(X)\det\left(\sum_{i=1}^{n-1} \sigma_i (Xe_i)(Ye_j)^T\right) \det(Y)
$$

and thus $\det(A + \delta e_i e_j^T) \neq 0$ if and only if $(x_n)_i(y_n)_j \neq 0$ since $\det(X)$ and $\det(Y)$ are nonzero. Since $x_n$ and $y_n$ have Euclidean norms equal to one, they are nontrivial and thus $C_2$ is nonempty.

We thus arrive at the main result of this section.

**Theorem 11.** If $A$ has a one-dimensional null space, then $PAQ$ has a Generalized LU-factorization with $u_{n,n} = 0$ if and only if $P$ and $Q$ permute an element in $C_2$ to the $(n, n)$th position in $PAQ$. Moreover, there always exists at least one such factorization for any $A$ with a one-dimensional null space.

The set $C_2$ can be viewed as a coloring of the elements of $A$, and a given pivoting strategy can be viewed as applying permutations on this coloring. It is well known that the complete pivoting strategy (CP) will always produce an $LU$-factorization with $u_{n,n} = 0$ but partial pivoting (PP) may not. The fact that CP will always work is consistent with (but not a result of) Theorem 11. The following theorem states the conditions under which PP will not work.

**Theorem 12.** The row (column) partial pivoting (PP) strategy will produce an $LU$-factorization with $u_{n,n} = 0$ only if $C_2$ contains at least one element from the last column (row) of $A$.

4. The Nonsingular Case. Assume that $A$ is nonsingular. In this section, we show how to find permutations $P$ and $Q$ such that $PAQ$ has a Generalized $LU$-factorization with a $u_{n,n}$ that is as small as $A$ is singular. First, we show that in this case $C_1$ is related to the nonzero elements of $A^{-1}$.

**Definition 13.** Let $M = A^{-1}$. Define $C_3 = \{a_{i,j}|m_{j,i} \neq 0\}$.

**Lemma 14.** If $A$ is nonsingular, then $C_1 = C_3$. Moreover, if $a_{i,j} \in C_3$, then $\det(A - m_{j,i} e_i e_j^T) = 0$.

**Proof.** Consider perturbing the $(i, j)$th element of $A$ by $\delta$. Thus

$$
\det(A - \delta e_i e_j^T) = \det(A^{-1})\det(I - \delta A^{-1} e_i e_j^T) = \det(A^{-1})(1 - \delta m_{j,i})
$$

by Lemma 8, from which the results follow easily.

Next, we prove a result that relates the size of $u_{n,n}$ to the size of perturbations needed to change the rank of $A$. 
Lemma 15. If \( \det(A - \epsilon e_i e_j^T) = 0 \) with \( \epsilon \neq 0 \), and \( P \) and \( Q \) permute the \( (i, j) \)th element of \( A \) to the \( (n, n) \)th element of \( PAQ \), then \( PAQ \) has a Generalized LU-factorization with \( u_{n,n} = \epsilon \).

Proof. Write \( PAQ \) in a partitioned form similar to (2), and \( \tilde{A} = P(A - \epsilon e_i e_j^T)Q \) in a similar form except that \( d \) is replaced by \( d - \epsilon \). By Lemma 4, \( \tilde{A} \) has a Generalized LU-factorization similar to (3) with \( \tilde{u}_{n,n} = d - \epsilon + p^T S^{-1} q = 0 \). On the other hand, by a construction similar to that used in the proof of Lemma 4, it can be shown that \( PAQ \) has a Generalized LU-factorization with \( u_{n,n} = d + p^T S^{-1} q \), and therefore \( u_{n,n} = \epsilon \).

Combining the last two lemmas, we have the following result:

Theorem 16. If \( A \) is nonsingular, then \( PAQ \) has a Generalized LU-factorization if and only if \( P \) and \( Q \) permute an element \( a_{i,j} \in C_3 \) to the \( (n, n) \)th position of \( PAQ \). Moreover, the resulting LU-factorization has \( u_{n,n} = m_{j,i}^{-1} \).

To produce a small pivot, we have to look for the large elements of \( A^{-1} \).

Definition 17. Define \( \|A\|_L = \max_{i,j} |a_{i,j}|, 1 \leq i, j \leq n \).

It can easily be verified that \( \| \cdot \|_L \) is a matrix norm, and satisfies the following norm-equivalence.

Lemma 18.

\[
(4) \quad (a) \quad \left( \frac{1}{n} \right) \|A\|_\infty \leq \|A\|_L \leq \|A\|_\infty.
\]

\[
(5) \quad (b) \quad \|A\|_\infty \kappa_L^{-1}(A) \leq \|A^{-1}\|_L^{-1} \leq n \|A\|_\infty \kappa_L^{-1}(A).
\]

where \( \kappa_L(A) = \|A\|_\infty \|A^{-1}\|_\infty \).

Proof. Straightforward.

We are primarily interested in the upper bound in (b) in the above lemma. It shows that the largest element of \( A^{-1} \) in absolute value is \( O(\kappa_L(A)) \).

The next definition defines the set of large elements of \( A^{-1} \).

Definition 19. Let \( r > 1 \) be a real positive scalar. Define \( C_4(r) = \{a_{i,j} \mid m_{j,i} \neq 0 \) and \( |m_{j,i}| = r \|A\|_\infty \kappa_L^{-1}(A) \} \).

Lemma 20. The size of \( C_4(r) \) is a nondecreasing function of \( r \) and \( C_4(1) \) is nonempty.

Proof. Follows directly from Lemma 18.

We can characterize the LU-factorizations of \( A \) with small \( u_{n,n} \) by the coloring \( C_4 \).

Theorem 21. If \( A \) is nonsingular, then \( PAQ \) has a Generalized LU-factorization with \( |u_{n,n}| \leq r \|A\|_\infty \kappa_L^{-1}(A) \) if and only if \( P \) and \( Q \) permute an element of \( C_4(r) \) to the \( (n, n) \)th position of \( PAQ \).

Proof. The if part follows from the if part of Theorem 16 and the fact that \( C_4(r) \) is a subset of \( C_3 \). The only if part follows from the result of Theorem 16 and the definition of \( C_4(r) \).

We can also characterize the LU-factorizations of \( A \) with small \( u_{n,n} \) by the singular vectors \( x_n \) and \( y_n \) corresponding to \( \sigma_n \).

Definition 22. Let \( r > 1 \) be a real positive scalar. Define \( C_5(r) = \{(a_{i,j}|(x_n)_i(y_n)_j| \geq 1/rn\}, and \( A^+ = \sum_{i=1}^{n-1} \sigma_i^{-1} y_i x_i^T \).
Note that $A^+$ is the pseudo-inverse of $A$ with $\sigma_n$ set to zero.

**Lemma 23.** The size of $C_5(r)$ is a nondecreasing function of $r$ and $C_5(1)$ is nonempty.

**Proof.** Since $x_n$ and $y_n$ have Euclidean norm equal to one, they satisfy $\|x_n\|_\infty \geq 1/\sqrt{n}$ and $\|y_n\|_\infty \geq 1/\sqrt{n}$, and thus there is at least one element in $C_5(1)$.

**Theorem 24.** If $P$ and $Q$ permute an element of $C_5(r)$ to the $(n,n)$th position of $PAQ$, then $PAQ$ has a Generalized LU-factorization with $u_{n,n}$ satisfying the following bounds:

\[
\begin{align*}
(a) & \quad |u_{n,n}| \leq \sigma_n rn \left(1 - r n^2 \left(\sigma_n/\sigma_{n-1}\right)^2\right)^{-1}, \\
(b) & \quad |u_{n,n}| \leq \sigma_n rn \left(1 - r n \sigma_n A^+ \|I\|_\infty\right)^{-1},
\end{align*}
\]

provided the quantities inside the brackets are positive.

**Proof.** It can be shown that if the quantities inside the brackets are positive, then $C_5(r)$ is a subset of $C_3$ and therefore the Generalized LU-factorizations exist by Theorem 16. The bounds are obtained by finding lower bounds for the absolute values of the elements of $A^{-1}$ corresponding to elements in $C_5(r)$.

In the limit as $\sigma_n \to 0$, $C_3(r) \to C_2$ for large enough $r$ and the bounds in Theorem 24 show that $u_{n,n} \to 0$. Thus, the results of Theorem 24 reduce to that of the if part of Theorem 11.

Theorem 21 is more general but requires knowledge about $A^{-1}$. Theorem 24 is more useful when $A$ is nearly singular because it is more likely that it will be applicable and because it only uses the singular vectors $x_n$ and $y_n$. Unfortunately, the bounds are not tight in general. However, $C_3(r)$ can be used to indicate where the large elements of $A^{-1}$ are located, since $A^{-1} = A^+ + \sigma_n^{-1} y_n x_n^T$, the last term with $\sigma_n^{-1}$ will tend to dominate the first as $\sigma_n \to 0$.

Most pivoting strategies in use are designed to control numerical stability and/or sparseness structures rather than to produce a small (or zero) pivot at the $(n,n)$th position of $U$. Given a pivoting strategy, the chance that it will produce a small $u_{n,n}$ for a given matrix seems to depend on the size of the sets $C_4(r)$ and $C_5(r)$. Without any a priori knowledge about either the matrix or the pivoting strategy, the chance that a pivoting strategy will choose an element from $C_4(r)$ or $C_5(r)$ increases with the size of these sets. Conversely, if these sets contain only a few elements for relatively small values of $r$, then it is highly likely that a pivoting strategy will not produce a small $u_{n,n}$. The following theorem states the conditions under which PP will not produce a small $u_{n,n}$.

**Theorem 25.** The row (column) partial pivoting (PP) strategy will produce an LU-factorization with $|u_{n,n}| \leq r n \|A\|_\infty \kappa^{-1}_\infty(A)$ only if $C_4(r)$ contains at least one element from the last column (row) of $A$.

For nearly singular matrices, the size of $C_5(r)$ depends on the number of elements with large absolute values in the approximate null vectors. Many of the known examples of nearly singular matrices for which the common pivoting strategies fail to produce small pivots have very sparse colorings corresponding to $C_4(r)$ and $C_5(r)$. These matrices are rare in the sense that their inverses and null vectors have very skew distributions of the size of their elements, namely, only a few elements of $A^{-1}$
are $O(\kappa(A))$ and only a few elements of $x_n$ and $y_n$ are $O(1)$. Fortunately, they are relatively harmless since the common pivoting strategies have no problems with simple permutations of them. We shall see some examples in the next few sections.

5. Algorithms. Based on the results of the last two sections, we can build an efficient 2-pass algorithm for computing an $LU$-factorization of a given matrix $A$ with a small $u_{n,n}$. The algorithm takes the following general form:

**Algorithm SP:**

1. Compute the $LU$-factorization of $A$ by some conventional pivoting strategy (e.g., PP).
2. Estimate the condition number of $A$ [6], [8], [17].
3. If $|u_{n,n}| = O(||A||\kappa^{-1}(A))$ then done.
4. Use a few steps of inverse iteration to find approximate singular vectors $x_n$ and $y_n$.
5. Determine the set $C_5(r)$ for some reasonable value of $r$.
6. Repeat the following until found or $C_5(r)$ is empty:
   a. Find the element in $C_5(r)$, denoted by $a_{k,l}$, with the largest value of $|(x_n)_k(y_n)_l|$
   b. Compute $m_{l,k}$ by solving for the $k$th column $z$ of $A^{-1}$ from $Az = e_k$, and extracting the $l$th component of $z$.
   c. If $|m_{l,k}| = O(||A||\kappa^{-1}(A))$ then set found to true else discard $a_{k,l}$ from $C_5(r)$.
7. If not found then compute $A^{-1}$ and find the largest element $m_{l,k}$.
8. Find $P$ and $Q$ that will permute $a_{k,l}$ to the $(n, n)$th position of $PAQ$.
9. Compute the $LU$-factorization of $PAQ$ and force the pivoting strategy into not moving the $(n, n)$th element of $PAQ$ (i.e. compute the Generalized $LU$-factorization of $PAQ$).

Algorithm SP will usually succeed at Step 3, unless $A$ is nearly singular and $A^{-1}$ has a very skew distribution of the sizes of its elements. If the pivoting strategy fails to produce a small $u_{n,n}$ when $A$ is nearly singular, then the set $C_5(r)$ will most likely contain an element with a large $m_{l,k}$ so that the inner loop at Step 6 will converge after one or two iterations. If this step fails, then we have to compute $A^{-1}$ which is more expensive but is guaranteed to work by Theorem 21.

If we do not have to resort to computing $A^{-1}$, then Algorithm SP will cost at worst two factorizations and a few backsolves at Steps 2, 4 and 6.b. For a general dense $n$ by $n$ matrix, an $LU$-factorization costs $n^3/3$ floating-point operations, a backsolve costs $n^2$ operations and computing the inverse costs $n^3$ operations. On the other hand, a full SVD costs about $10n^3$ operations [1], [9]. The storage overhead of Algorithm SP is an extra copy of the original $A$ and a few vectors. Thus, in situations where determining the rank is important, but where a full SVD is not needed, Algorithm SP may be competitive.

For problems where the same $LU$-factorization may be used many times (e.g., many right-hand sides), the extra cost may not be significant. Moreover, in situations where a sequence of related $A$'s have to be factored (e.g., in numerical continuation methods around singular points [2], [3], [11], [14], [15], [16], [20]), Algorithm SP has to be executed only once, as the permutations $P$ and $Q$ produced by it can be reused by the nearby problems. If $A$ has special structures (e.g. banded),
then the permutations $P$ and $Q$ should be determined to preserve as much of the structures as possible.

6. An Example. In this section, we shall demonstrate the effectiveness of Algorithm SP by applying it algebraically to the matrix $T$ defined earlier to produce an $LU$-factorization with a $u_{n,n} = 2^{-(n-2)}$.

Since $T$ is upper triangular, it is easy to find its inverse:

$$T^{-1} = \begin{bmatrix}
1 & 1 & 2 & 4 & \cdots & 2^{n-2} \\
1 & 1 & 2 & \cdots & \cdots & \\
1 & \cdots & \cdots & \cdots & \cdots & \\
\cdots & 1 & 2 & 4 & \cdots & \\
\cdots & 1 & 2 & \cdots & \cdots & \\
1 & 1 & \cdots & \cdots & \cdots & 1
\end{bmatrix}.$$

Thus we see that the largest element of $T^{-1}$ is in the $(1, n)$th position. Incidentally, this will also be discovered by computing the singular vectors $x_n$ and $y_n$. Therefore, to produce a small $u_{n,n}$, the $(n, 1)$th element of $A$ should be permuted to the $(n, n)$th position. We can do this by simply switching the first and the last column of $A$ to produce:

$$PAQ = \begin{bmatrix}
-1 & -1 & \cdots & -1 & 1 \\
-1 & 1 & -1 & \cdots & 0 \\
\cdots & 1 & \cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots & -1 & \cdots \\
-1 & \cdots & \cdots & 1 & 0 \\
1 & 0 & 0 & \cdots & 0 & 0
\end{bmatrix} = \begin{bmatrix}
S & q \\
p^T & d
\end{bmatrix}.$$

The $LU$-factorization of the principal submatrix $S$ of $PAQ$ of dimension $n-1$ can easily be found and by the construction outlined in the proof of Theorem 6, the following (unscaled) factorization of $PAQ$ is obtained:

$$PAQ = \begin{bmatrix}
1 & 0 & \cdots & \cdots & 0 \\
1 & 2 & 0 & \cdots & \cdots \\
\cdots & 1 & 2 & \cdots & \cdots \\
\cdots & \cdots & \cdots & 0 & \cdots \\
1 & \cdots & 1 & 2 & 0 \\
-1 & -1 & \cdots & -1 & 1
\end{bmatrix} \begin{bmatrix}
-1 & -1 & \cdots & -1 & 1 \\
0 & 1 & 1 & \cdots & -1 \\
\cdots & \cdots & \cdots & 1 & \cdots \\
\cdots & \cdots & \cdots & 1 & -2^{-1} \\
0 & \cdots & \cdots & 1 & -2^{-(n-3)} \\
0 & \cdots & \cdots & 0 & 2^{-(n-2)}
\end{bmatrix}.$$

7. Numerical Experiments. The example in the last section was computed algebraically. In this section, we present results of some numerical experiments with two well-known matrices that are nearly singular but for which the usual partial pivoting strategy fails to produce any small pivots. All computations were performed on a DEC-2060, with a 27-bit mantissa, corresponding to a relative machine precision of approximately $4 \times 10^{-8}$. All $LU$-factorizations are computed by the LINPACK [8] routine SGECO, which equilibrates the matrix by scaling and uses the partial pivoting strategy. It also returns an estimate of the condition number in the $l_1$-norm. We note that we did not force the pivoting strategy of SGECO into not choosing the last row of PAQ as the pivoting row.

The first example is the matrix $T$ treated in the last section, with $n = 20$. Note that, from (8), we see that the size of the elements of the last column of $T^{-1}$
Table 7-1: Computed $u_{n,n}$ of $TQ_k$ as a function of $k$

Reciprocal of the Estimated $\kappa(T) = 0.14305115E-06$

<table>
<thead>
<tr>
<th>$k$</th>
<th>$u_{n,n}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.38146973E-05</td>
</tr>
<tr>
<td>2</td>
<td>0.76293945E-05</td>
</tr>
<tr>
<td>3</td>
<td>0.15258789E-04</td>
</tr>
<tr>
<td>4</td>
<td>0.30517578E-04</td>
</tr>
<tr>
<td>5</td>
<td>0.61035156E-04</td>
</tr>
<tr>
<td>6</td>
<td>0.12207031E-03</td>
</tr>
<tr>
<td>7</td>
<td>0.24414063E-03</td>
</tr>
<tr>
<td>8</td>
<td>0.48828125E-03</td>
</tr>
<tr>
<td>9</td>
<td>0.97656250E-03</td>
</tr>
<tr>
<td>10</td>
<td>0.19531250E-02</td>
</tr>
<tr>
<td>11</td>
<td>0.39062500E-02</td>
</tr>
<tr>
<td>12</td>
<td>0.78125000E-02</td>
</tr>
<tr>
<td>13</td>
<td>0.15625000E-01</td>
</tr>
<tr>
<td>14</td>
<td>0.31250000E-01</td>
</tr>
<tr>
<td>15</td>
<td>0.62500000E-01</td>
</tr>
<tr>
<td>16</td>
<td>0.12500000E+00</td>
</tr>
<tr>
<td>17</td>
<td>0.25000000E+00</td>
</tr>
<tr>
<td>18</td>
<td>0.50000000E+00</td>
</tr>
<tr>
<td>19</td>
<td>0.10000000E+01</td>
</tr>
<tr>
<td>20</td>
<td>0.10000000E+01</td>
</tr>
</tbody>
</table>

Decreases rapidly from $2^{n-2}$ in the $(1, n)$th position to 1 in the $(n, n)$th position. To verify the results of Theorem 16, we computed a sequence of $LU$-factorizations of the matrices $TQ_k$, where $Q_k$ switches the $k$th column of $T$ with the last column of $T$. In Table 7-1, we tabulate the value of the computed $u_{n,n}$ as a function of $k$. By Theorem 16, the exact value for $u_{n,n}$ should be equal to $m_k^{-1}$. From the table, we see that the computed $u_{n,n}$'s are exactly as predicted by Theorem 16.

The second example is a matrix $W$ quoted by Wilkinson [23, p. 308 and p. 325] as an example of a nearly singular matrix for which PP does not produce any small pivot. The matrix $W$ arises in the inverse iteration with the largest eigenvalue $\lambda = 10.7461942$ of the following matrix:

$$ W_2 = \begin{bmatrix} 10 & 1 & 1 & 1 & 0 \\ 1 & 9 & 1 & 0 & \\ 1 & 8 & \\ 1 & 0 & -1 & -2 & 1 \\ 0 & 1 & -10 \end{bmatrix} $$
Table 7-2: Computed pivots for $W$ and $\tilde{W}$

Reciprocal of estimated $\kappa(W) = 0.2817750 \times 10^{-8}$

<table>
<thead>
<tr>
<th>$i$</th>
<th>IPVT</th>
<th>$u_{i,i}$ of $W$</th>
<th>$u_{i,i}$ of $\tilde{W}$</th>
<th>$(\tilde{W}^{-1})_{n,i}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>0.000000000E+01</td>
<td>-0.207461940E+02</td>
<td>-0.728823240E-12</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>0.000000000E+01</td>
<td>-0.174619420E+01</td>
<td>-0.763179210E+07</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>0.000000000E+01</td>
<td>-0.217352030E+01</td>
<td>-0.309896880E+07</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>0.100000000E+01</td>
<td>-0.328611110E+01</td>
<td>-0.878578200E+06</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>0.100000000E+01</td>
<td>-0.444188310E+01</td>
<td>-0.192355800E+06</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>0.100000000E+01</td>
<td>-0.552106450E+01</td>
<td>-0.343797880E+05</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>0.100000000E+01</td>
<td>-0.656506970E+01</td>
<td>-0.519713600E+04</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>0.100000000E+01</td>
<td>-0.759387300E+01</td>
<td>-0.681101360E+03</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>0.100000000E+01</td>
<td>-0.861450910E+01</td>
<td>-0.788075260E+02</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>0.100000000E+01</td>
<td>-0.963011100E+01</td>
<td>-0.816456100E+01</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>-0.136637790E+01</td>
<td>-0.106423530E+02</td>
<td>-0.765871480E+00</td>
</tr>
<tr>
<td>12</td>
<td>13</td>
<td>-0.116522300E+02</td>
<td>-0.116522300E+02</td>
<td>-0.656426360E+01</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>-0.126603740E+02</td>
<td>-0.126603740E+02</td>
<td>-0.517968900E+02</td>
</tr>
<tr>
<td>14</td>
<td>15</td>
<td>-0.136672080E+02</td>
<td>-0.136672080E+02</td>
<td>-0.378685230E+03</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>-0.146730260E+02</td>
<td>-0.146730260E+02</td>
<td>-0.257917020E+04</td>
</tr>
<tr>
<td>16</td>
<td>17</td>
<td>-0.156780420E+02</td>
<td>-0.156780420E+02</td>
<td>-0.164422070E+05</td>
</tr>
<tr>
<td>17</td>
<td>18</td>
<td>-0.168824110E+02</td>
<td>-0.168824110E+02</td>
<td>-0.985172480E+07</td>
</tr>
<tr>
<td>18</td>
<td>19</td>
<td>-0.176862510E+02</td>
<td>-0.176862510E+02</td>
<td>-0.556824110E+08</td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>-0.186896530E+02</td>
<td>-0.186896530E+02</td>
<td>-0.297837370E+09</td>
</tr>
<tr>
<td>20</td>
<td>21</td>
<td>-0.196926890E+02</td>
<td>-0.196926890E+02</td>
<td>-0.151203090E+10</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>-0.206954140E+02</td>
<td>-0.206954140E+02</td>
<td>-0.102276230E+08</td>
</tr>
</tbody>
</table>

Since the matrix $W$ is symmetric, the eigenvector corresponding to this eigenvalue is equal to the left and right singular vectors $x_n$ and $y_n$ of $W$. Wilkinson gave the computed eigenvector $x_n$ which turns out to have a very skew distribution of the size of its components, with $(x_n)_1$ being the largest element. Thus, according to our theory, we should permute the $(1, 1)$th element of $W$ to the $(n, n)$th position in order to produce a small $u_{n,n}$. To accomplish this, we simply switched the first and last row followed by switching the first and last column of $W$. The resulting matrix, denoted by $\tilde{W}$, is given to SGECCO. No interchanges were needed in the subsequent elimination. The pivots are tabulated in Table 7-2, together with those produced by SGECCO for $W$ and the last row of $\tilde{W}^{-1}$. We see from the table that the last pivot $u_{n,n}$ is as small as the reciprocal of the estimated condition number. Moreover, $u_{n,n}$ is exactly equal to the reciprocal of $(\tilde{W}^{-1})_{n,n}$, verifying Theorem 16. The array IPVT($i$) listed is the pivot sequence used by SGECCO for $W$. We see that there were interchanges up to the 10th step, after which there were no more interchanges. This is slightly different from the results reported by Wilkinson.

8. Conclusion. In this paper, we have developed a theory for $LU$-factorizations with a small $n$th pivot. Moreover, we provided the basis for practical algorithms for computing such factorizations. We have demonstrated the effectiveness of both the theory and the algorithms by applying them to two well-known “counterexamples”
to the theme of LU-factorizations with small pivots. Although Algorithm SP is quite efficient and practical for nonpathological nearly singular matrices, we do not claim that it is the most efficient implementation of our theory. We only hope that it provides a basis for further development. The best algorithm is perhaps one that will be guaranteed to produce a small pivot in no more cost (in both time and space) than Gaussian Elimination, possibly using some adaptive pivoting strategies that estimates the colorings represented by the $C_i$'s. Furthermore, for problems with special structures, it is important to work within the constraints imposed by the structures.

9. Appendix. In this appendix, we shall prove Lemma 8. Part (a) of Lemma 8 is well known. We shall prove Part (b) only. We include the proof here because we have not been able to locate either the result or the proof in the literature.

First, we need a result on the determinant of a rank-2 modification of the identity matrix.

**Lemma 26.** $\det(I + uv^T + wz^T) = 1 + v^Tu + z^Tw + (v^Tu)(z^Tw) - (v^Tw)(z^Tu)$.

**Proof.** We shall get the determinant through the eigenvalues. The rank-2 modification has a range spanned by the vectors $u$ and $w$ and, in this subspace, can be represented by the matrix:

$$R_2 = \begin{bmatrix} v^Tu & v^Tw \\ z^Tu & z^Tw \end{bmatrix}.$$ 

Since the rank-2 modification only changes two of the eigenvalues of the identity matrix, the determinant of the rank-2 modification of the identity matrix can be easily expressed in terms of the eigenvalues $\lambda_1$ and $\lambda_2$ of $R_2$ as

$$\det(I + uv^T + wz^T) = (1 + \lambda_1)(1 + \lambda_2) = 1 + (\lambda_1 + \lambda_2) + \lambda_1\lambda_2.$$ 

From the characteristic polynomial for $R_2$, we obtain

$$\lambda_1 + \lambda_2 = v^Tu + z^Tw \quad \text{and} \quad \lambda_1\lambda_2 = (v^Tu)(z^Tw) - (v^Tw)(z^Tu),$$

from which the lemma follows.

Now we can prove Part (b) of Lemma 8.

**Proof (of Part (b) of Lemma 8).** With $D_1 = \text{Diagonal}(d_1, \ldots, d_{n-1}, 1)$ and $I_0 = \text{Diagonal}(1, \ldots, 1, 0)$, we can write $D + vw^T$ as

$$D + vw^T = D_1(I_0 + (D_0^{-1}v)w^T) = D_1(I + (D_0^{-1}v)w^T - e_n e_n^T).$$

The second term on the right-hand side is a rank-2 modification of the identity matrix, and the result of Part (b), Lemma 8 follows by applying the result of Lemma 26.

I acknowledge helpful discussions with Drs. Youcef Saad and Stanley Eisenstat on the results in this Appendix.

Computer Science Department
Yale University
New Haven, Connecticut 06520


