Methods for the numerical solution of the nonlinear Schroedinger equation

Author:
J. M. Sanz-Serna

Journal:
Math. Comp. **43** (1984), 21-27

MSC:
Primary 65M10

DOI:
https://doi.org/10.1090/S0025-5718-1984-0744922-X

MathSciNet review:
744922

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Optimal rates of convergence are established for several fully-discrete schemes for the numerical solution of the nonlinear Schroedinger equation. Both finite differences and finite elements are considered for the discretization in space, while the integration in time is treated either by the leap-frog technique or by a modified Crank-Nicolson procedure, which generalizes the one suggested by Delfour, Fortin and Payne and possesses two useful conserved quantities.

**[1]**Douglas N. Arnold, Jim Douglas Jr., and Vidar Thomée,*Superconvergence of a finite element approximation to the solution of a Sobolev equation in a single space variable*, Math. Comp.**36**(1981), no. 153, 53–63. MR**595041**, https://doi.org/10.1090/S0025-5718-1981-0595041-4**[2]**T. B. Benjamin & J. E. Feir, "The disintegration of wave trains in deep water. Part 1,"*J. Fluid. Mech.*, v. 27, 1967, pp. 417-430.**[3]**M. Delfour, M. Fortin, and G. Payre,*Finite-difference solutions of a nonlinear Schrödinger equation*, J. Comput. Phys.**44**(1981), no. 2, 277–288. MR**645840**, https://doi.org/10.1016/0021-9991(81)90052-8**[4]**Graeme Fairweather,*Finite element Galerkin methods for differential equations*, Marcel Dekker, Inc., New York-Basel, 1978. Lecture Notes in Pure and Applied Mathematics, Vol. 34. MR**0495013****[5]**D. F. Griffiths, A. R. Mitchell & J. Ll. Morris,*A Numerical Study of the Nonlinear Schroedinger Equation*, Department of Mathematics, University of Dundee, Report NA/52, May 1982.**[6]**Pên Yu Kuo and J. M. Sanz-Serna,*Convergence of methods for the numerical solution of the Korteweg-de Vries equation*, IMA J. Numer. Anal.**1**(1981), no. 2, 215–221. MR**616332**, https://doi.org/10.1093/imanum/1.2.215**[7]**J. C. Lopez-Marcos,*Integración Numérica de la Ecuación de Schroedinger no lineal*, M.Sc. thesis, University of Valladolid, Spain, 1983.**[8]**P. D. Richtmyer & K. W. Morton,*Difference Methods for Initial-Value Problems*, Interscience-Wiley, New York, 1967.**[9]**J. M. Sanz-Serna and V. S. Manoranjan,*A method for the integration in time of certain partial differential equations*, J. Comput. Phys.**52**(1983), no. 2, 273–289. MR**725596**, https://doi.org/10.1016/0021-9991(83)90031-1**[10]**Walter A. Strauss,*The nonlinear Schrödinger equation*, Contemporary developments in continuum mechanics and partial differential equations (Proc. Internat. Sympos., Inst. Mat., Univ. Fed. Rio de Janeiro, Rio de Janeiro, 1977) North-Holland Math. Stud., vol. 30, North-Holland, Amsterdam-New York, 1978, pp. 452–465. MR**519654****[11]**Walter Strauss and Luis Vazquez,*Numerical solution of a nonlinear Klein-Gordon equation*, J. Comput. Phys.**28**(1978), no. 2, 271–278. MR**0503140**, https://doi.org/10.1016/0021-9991(78)90038-4**[12]**Mary Fanett Wheeler,*A priori 𝐿₂ error estimates for Galerkin approximations to parabolic partial differential equations*, SIAM J. Numer. Anal.**10**(1973), 723–759. MR**0351124**, https://doi.org/10.1137/0710062**[13]**H. C. Yuen & W. E. Ferguson, Jr., "Relationship between Benjamin-Feir instability and recurrence in the nonlinear Schroedinger equation,"*Phys. Fluids*, v. 21, 1978, pp. 1275-1278.**[14]**V. E. Zakharov and A. B. Shabat,*Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media*, Ž. Èksper. Teoret. Fiz.**61**(1971), no. 1, 118–134 (Russian, with English summary); English transl., Soviet Physics JETP**34**(1972), no. 1, 62–69. MR**0406174**

Retrieve articles in *Mathematics of Computation*
with MSC:
65M10

Retrieve articles in all journals with MSC: 65M10

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1984-0744922-X

Article copyright:
© Copyright 1984
American Mathematical Society