Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Numerical analysis of the exterior boundary value problem for the time-harmonic Maxwell equations by a boundary finite element method. II. The discrete problem


Author: A. Bendali
Journal: Math. Comp. 43 (1984), 47-68
MSC: Primary 65N30; Secondary 78-08, 78A45
DOI: https://doi.org/10.1090/S0025-5718-1984-0744924-3
MathSciNet review: 744924
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: With the help of curved and mixed finite elements, we introduce an approximate surface on which the discrete problem is defined and construct surface currents and charges which approximate the solution of the continuous problem studied in a previous part. We study the existence and uniqueness of the solution of the discrete problem and give estimates for the error between currents, charges, corresponding fields and their calculated approximations.


References [Enhancements On Off] (What's this?)

  • [1] R. A. Adams, Sobolev spaces, Academic Press, New York, San Francisco, London, 1975. MR 0450957 (56:9247)
  • [2] F. Brezzi, "On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers," R.A.I.R.O. Ser. Rouge, v. 8, No. R-2, 1974, pp. 129-151. MR 0365287 (51:1540)
  • [3] Y. Choquet-Bruhat, C. De Witt-Morette & M. Dillard-Bleick, Analysis, Manifolds and Physics, North-Holland, Amsterdam, New York, 1977. MR 0467779 (57:7631)
  • [4] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, New York, 1978. MR 0520174 (58:25001)
  • [5] G. J. Fix & R. A. Nicolaides, "An analysis of mixed finite element approximations for periodic acoustic wave propagation," SIAM J. Numer. Anal., v. 17, 1980, pp. 779-786. MR 595443 (82f:76029)
  • [6] T. Ha Duong, "A finite element method for the double-layer potential solutions of the Neumann exterior problem", Math. Methods Appl. Sci., v. 2, 1980, pp. 191-208. MR 570403 (81f:65094)
  • [7] R. F. Harrington, "Characteristic modes for antennas and scatterers," Numerical and Asymptotic Techniques in Electromagnetics (R. Mittra, ed.), Topics in Applied Physics, Vol. 3, Springer-Verlag, Berlin, Heidelberg, New York, 1975.
  • [8] G. C. Hsiao & W. L. Wendland, "The Aubin-Nitsche lemma for integral equations," J. Integral Equations, v. 3, 1981, pp. 299-315. MR 634453 (83j:45019)
  • [9] J. Giroire, Integral Equation Methods for Exterior Problems for the Helmholtz Equation, Rapport Interne no. 40, Centre de Mathématiques Appliquées, Ecole Polytechnique, Palaiseau, 1978.
  • [10] J. L. Lions & E. MAGENES, Problèmes aux Limites Non Homogènes et Applications, Vol. 1, Dunod, Paris, 1968. MR 0247243 (40:512)
  • [11] J. Nečas, Les Méthodes Directes en Théorie des Équations Elliptiques, Masson, Paris and Academia, Prague, 1967.
  • [12] J. C. Nedelec, "Curved finite element methods for the solution of integral singular equations in $ {{\mathbf{R}}^3}$," Comput. Methods Appl. Mech. Engrg., v. 8, 1976, pp. 61-80. MR 0455503 (56:13741)
  • [13] J. C. Nedelec, "Computation of eddy currents on a surface in $ {{\mathbf{R}}^3}$ by finite element methods," SIAM J. Numer. Anal., v. 15, 1978, pp. 580-595. MR 0495761 (58:14409)
  • [14] D. T. Paris & F. K. Hurd, Basic Electromagnetic Theory, McGraw-Hill, Physical and Quantum Electronic Series, McGraw-Hill, New York, 1969.
  • [15] D. J. Poggio & E. K. Miller, "Solutions of three-dimensional scattering problems," Computer Techniques for Electromagnetics (R. Mittra, ed.), Pergamon Press, New York, 1973.
  • [16] S. S. M. Rao, D. R. Wilton & A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas and Propagation, v. AP-30, 1982, pp. 409-418.
  • [17] P. A. Raviart & J. M. THOMAS, A Mixed Finite Element Method for 2nd Order Elliptic Problems, Lecture Notes in Math., Vol. 606, Springer-Verlag, Berlin and New York, 1977, pp. 292-315. MR 0483555 (58:3547)
  • [18] F. Rellich, "Über das asymptotische Verhalten der Lösungen von $ \Delta u + \lambda u = 0$ in unendlichen Gebieten," Jber. Deutsch. Math. Verein, v. 53, 1943, pp. 57-65. MR 0017816 (8:204c)
  • [19] J. M. Thomas, Sur l'Analyse Numérique des Méthodes d'Eléments Finis Hybrides et Mixtes, Thèse de Doctorat d'Etat, Univ. Paris VI, 1977.
  • [20] J. M. Thomas, Méthodes d'Éléments Finis Mixtes et Hybrides, Cours de D. E. A. 1980-1981, Univ. Paris VI, Laboratoire d'Analyse Numérique (LA 189), 1981.
  • [21] F. Treves, Introduction to Pseudo-Differential and Fourier Integral Operators, Vol. 2: Fourier Integral Operators, Plenum Press, New York and London, 1980. MR 597145 (82i:58068)
  • [22] J. Van Bladel, Electromagnetic Fields, McGraw-Hill, New York, 1964.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65N30, 78-08, 78A45

Retrieve articles in all journals with MSC: 65N30, 78-08, 78A45


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1984-0744924-3
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society