Sharp convergence rates for nonlinear product formulas

Author:
Eric Schechter

Journal:
Math. Comp. **43** (1984), 135-155

MSC:
Primary 65J15; Secondary 34G20, 47H15

DOI:
https://doi.org/10.1090/S0025-5718-1984-0744928-0

MathSciNet review:
744928

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Nonlinear versions of the Lie-Trotter product formula and related formulas are given in this paper. The convergence rates are optimal. The results are applicable to some nonlinear partial differential equations.

**[1]**J. M. Ball,*Finite time blow-up in nonlinear problems*, Nonlinear evolution equations (Proc. Sympos., Univ. Wisconsin, Madison, Wis., 1977) Publ. Math. Res. Center Univ. Wisconsin, vol. 40, Academic Press, New York-London, 1978, pp. 189–205. MR**513819****[2]**Viorel Barbu,*Nonlinear semigroups and differential equations in Banach spaces*, Editura Academiei Republicii Socialiste România, Bucharest; Noordhoff International Publishing, Leiden, 1976. Translated from the Romanian. MR**0390843****[3]**H. Brézis and A. Pazy,*Convergence and approximation of semigroups of nonlinear operators in Banach spaces*, J. Functional Analysis**9**(1972), 63–74. MR**0293452****[4]**Paul R. Chernoff,*Product formulas, nonlinear semigroups, and addition of unbounded operators*, American Mathematical Society, Providence, R. I., 1974. Memoirs of the American Mathematical Society, No. 140. MR**0417851****[5]**Michael G. Crandall,*An introduction to evolution governed by accretive operators*, Dynamical systems (Proc. Internat. Sympos., Brown Univ., Providence, R.I., 1974) Academic Press, New York, 1976, pp. 131–165. MR**0636953****[6]**M. G. Crandall and T. M. Liggett,*Generation of semi-groups of nonlinear transformations on general Banach spaces*, Amer. J. Math.**93**(1971), 265–298. MR**0287357**, https://doi.org/10.2307/2373376**[7]**Jim Douglas Jr. and James E. Gunn,*A general formulation of alternating direction methods. I. Parabolic and hyperbolic problems*, Numer. Math.**6**(1964), 428–453. MR**0176622**, https://doi.org/10.1007/BF01386093**[8]**N. Dunford & J. T. Schwartz,*Linear Operators*. I, Wiley, New York, 1957.**[9]**Reuben Hersh and Tosio Kato,*High-accuracy stable difference schemes for well-posed initial value problems*, SIAM J. Numer. Anal.**16**(1979), no. 4, 670–682. MR**537279**, https://doi.org/10.1137/0716050**[10]**Einar Hille and Ralph S. Phillips,*Functional analysis and semi-groups*, American Mathematical Society Colloquium Publications, vol. 31, American Mathematical Society, Providence, R. I., 1957. rev. ed. MR**0089373****[11]**P. D. Lax and R. D. Richtmyer,*Survey of the stability of linear finite difference equations*, Comm. Pure Appl. Math.**9**(1956), 267–293. MR**0079204**, https://doi.org/10.1002/cpa.3160090206**[12]**P.-L. Lions and B. Mercier,*Splitting algorithms for the sum of two nonlinear operators*, SIAM J. Numer. Anal.**16**(1979), no. 6, 964–979. MR**551319**, https://doi.org/10.1137/0716071**[13]**E. E. Rosinger,*Stability and convergence for nonlinear difference schemes are equivalent*, J. Inst. Math. Appl.**26**(1980), no. 2, 143–149. MR**594525****[14]**Eric Schechter,*Stability conditions for nonlinear products and semigroups*, Pacific J. Math.**85**(1979), no. 1, 179–200. MR**571635****[15]**Eric Schechter,*Interpolation of nonlinear partial differential operators and generation of differentiable evolutions*, J. Differential Equations**46**(1982), no. 1, 78–102. MR**677585**, https://doi.org/10.1016/0022-0396(82)90111-5**[16]**Eric Schechter,*Necessary and sufficient conditions for convergence of temporally irregular evolutions*, Nonlinear Anal.**8**(1984), no. 2, 133–153. MR**734447**, https://doi.org/10.1016/0362-546X(84)90065-8**[17]**Gary A. Sod,*A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws*, J. Computational Phys.**27**(1978), no. 1, 1–31. MR**0495002****[18]**Gilbert Strang,*On the construction and comparison of difference schemes*, SIAM J. Numer. Anal.**5**(1968), 506–517. MR**0235754**, https://doi.org/10.1137/0705041**[19]**K. Yosida,*Functional Analysis*, first and later eds., Springer-Verlag, New York, 1964 and later.

Retrieve articles in *Mathematics of Computation*
with MSC:
65J15,
34G20,
47H15

Retrieve articles in all journals with MSC: 65J15, 34G20, 47H15

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1984-0744928-0

Keywords:
Accretive,
alternating direction method,
approximation scheme,
composition,
convergence rate,
dissipative,
evolution,
exponential,
fractional step method,
resolvent,
semigroup,
split step method

Article copyright:
© Copyright 1984
American Mathematical Society