Collocation for singular perturbation problems. II. Linear first order systems without turning points
Authors:
U. Ascher and R. Weiss
Journal:
Math. Comp. 43 (1984), 157187
MSC:
Primary 65L10; Secondary 34E15
MathSciNet review:
744929
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We consider singularly perturbed linear boundary value problems for ODE's with variable coefficients, but without turning points. Convergence results are obtained for collocation schemes based on Gauss and Lobatto points, showing that highly accurate numerical solutions for these problems can be obtained at a very reasonable cost using such schemes, provided that appropriate meshes are used. The implementation of the numerical schemes and the practical construction of corresponding meshes are discussed. These results extend those of a previous paper which deals with systems with constant coefficients.
 [1]
U.
Ascher, S.
Pruess, and R.
D. Russell, On spline basis selection for solving differential
equations, SIAM J. Numer. Anal. 20 (1983),
no. 1, 121–142. MR 687372
(84h:65075), http://dx.doi.org/10.1137/0720009
 [2]
U.
Ascher and R.
Weiss, Collocation for singular perturbation problems. I. First
order systems with constant coefficients, SIAM J. Numer. Anal.
20 (1983), no. 3, 537–557. MR 701095
(85a:65113), http://dx.doi.org/10.1137/0720035
 [3]
P.
W. Hemker, A numerical study of stiff twopoint boundary
problems, Mathematisch Centrum, Amsterdam, 1977. Mathematical Centre
Tracts, No. 80. MR 0488784
(58 #8294)
 [4]
Barbro
Kreiss and HeinzOtto
Kreiss, Numerical methods for singular perturbation problems,
SIAM J. Numer. Anal. 18 (1981), no. 2, 262–276.
MR 612142
(82e:65088), http://dx.doi.org/10.1137/0718019
 [5]
HeinzOtto
Kreiss and Nancy
Nichols, Numerical methods for singular perturbation problems,
Computing methods in applied sciences (Second Internat. Sympos.,Versailles,
1975) Springer, Berlin, 1976, pp. 544–558. Lecture Notes in
Phys., Vol. 58. MR 0445849
(56 #4182)
 [6]
Peter
A. Markowich and Christian
A. Ringhofer, Collocation methods for boundary value
problems on “long”\ intervals, Math. Comp. 40 (1983), no. 161, 123–150. MR 679437
(84d:65053), http://dx.doi.org/10.1090/S0025571819830679437X
 [7]
Robert
D. Russell, Collocation for systems of boundary value
problems, Numer. Math. 23 (1974), 119–133. MR 0416074
(54 #4150)
 [8]
Richard
Weiss, The application of implicit
RungeKutta and collection methods to boundaryvalue problems, Math. Comp. 28 (1974), 449–464. MR 0341881
(49 #6627), http://dx.doi.org/10.1090/S00255718197403418812
 [9]
Richard
Weiss, An analysis of the box and trapezoidal
schemes for linear singularly perturbed boundary value problems,
Math. Comp. 42 (1984), no. 165, 41–67. MR 725984
(86b:65085), http://dx.doi.org/10.1090/S00255718198407259842
 [10]
U. Ascher & R. Weiss, Collocation for Singular Perturbation Problems III: Nonlinear Problems Without Turning Points, Tech. Report 829, Univ. of British Columbia, Vancouver, Canada.
 [11]
Carl
de Boor and Blâir
Swartz, Collocation at Gaussian points, SIAM J. Numer. Anal.
10 (1973), 582–606. MR 0373328
(51 #9528)
 [12]
H. O. Kreiss, Centered Difference Approximation to Singular Systems of ODEs, Symposia Mathematica X (1972), Istituto Nazionale di Alta Matematica.
 [13]
P. Spudich & U. Ascher, "Calculation of complete theoretical seismograms in vertically varying media using collocation methods," Geoph. J. Roy. Astr. Soc., v. 75, 1983, pp. 101124.
 [1]
 U. Ascher, S. Pruess & R. D. Russell, "On spline basis selection for solving differential equations," SIAM J. Numer. Anal, v. 20, 1983, pp. 121142. MR 687372 (84h:65075)
 [2]
 U. Ascher & R. Weiss, "Collocation for singular perturbation problems I: First order systems with constant coefficients," SIAM J. Numer. Anal., v. 20, 1983, pp. 537557. MR 701095 (85a:65113)
 [3]
 P. W. Hemker, A Numerical Study of Stiff TwoPoint Boundary Value Problems, Math. Centrum, Amsterdam, 1977. MR 0488784 (58:8294)
 [4]
 B. Kreiss & H. O. Kreiss, "Numerical methods for singular perturbation problems," SIAM J. Numer. Anal., v. 18, 1981, pp. 262276. MR 612142 (82e:65088)
 [5]
 H. O. Kreiss & N. Nichols, Numerical Methods for Singular Perturbation Problems, Dept. of Computer Science Report #57, Uppsala University, 1975. MR 0445849 (56:4182)
 [6]
 P. A. Markowich & C. A. Ringhofer, "Collocation methods for boundary value problems on 'long' intervals," Math. Comp., v. 40, 1983, pp. 123150. MR 679437 (84d:65053)
 [7]
 R. D. Russell, "Collocation for systems of boundary value problems," Numer. Math. v. 23, 1974, 119133. MR 0416074 (54:4150)
 [8]
 R. Weiss, "The application of implicit RungeKutta and collocation methods to boundaryvalue problems," Math. Comp., v. 28, 1974, pp. 449464. MR 0341881 (49:6627)
 [9]
 R. Weiss, "An analysis of the box and trapezoidal schemes for linear singularly perturbed boundary value problems," Math. Comp., v. 42, 1984, pp. 4167. MR 725984 (86b:65085)
 [10]
 U. Ascher & R. Weiss, Collocation for Singular Perturbation Problems III: Nonlinear Problems Without Turning Points, Tech. Report 829, Univ. of British Columbia, Vancouver, Canada.
 [11]
 C. de Boor & B. Swartz, "Collocation at Gaussian points," SIAM J. Numer. Anal., v. 10, 1973, pp. 582606. MR 0373328 (51:9528)
 [12]
 H. O. Kreiss, Centered Difference Approximation to Singular Systems of ODEs, Symposia Mathematica X (1972), Istituto Nazionale di Alta Matematica.
 [13]
 P. Spudich & U. Ascher, "Calculation of complete theoretical seismograms in vertically varying media using collocation methods," Geoph. J. Roy. Astr. Soc., v. 75, 1983, pp. 101124.
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
65L10,
34E15
Retrieve articles in all journals
with MSC:
65L10,
34E15
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718198407449292
PII:
S 00255718(1984)07449292
Article copyright:
© Copyright 1984
American Mathematical Society
