Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Splitting of quartic polynomials


Author: William W. Adams
Journal: Math. Comp. 43 (1984), 329-343
MSC: Primary 12E10; Secondary 11R09, 11R27
DOI: https://doi.org/10.1090/S0025-5718-1984-0744941-3
MathSciNet review: 744941
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For integers r, s, t, u define the recursion $ A(n + 4) = rA(n + 3) - sA(n + 2) + tA(n + 1) - uA(n)$ where the initial conditions are set up in such a way that $ A(n) = {\alpha ^n} + {\beta ^n} + {\gamma ^n} + {\delta ^n}$ where $ \alpha ,\beta ,\gamma ,\delta $ are the roots of the associated polynomial $ f(x) = {x^4} - r{x^3} + s{x^2} - tx + u$ In this paper a detailed deterministic procedure using the $ A(n)$ for finding how $ f(x)$ splits modulo a prime integer p is given. This gives for p not dividing the discriminant of $ f(x)$ the splitting of p in the field obtained by adjoining a root of $ f(x)$ to the rational numbers. There is an interesting connection between the results here for reciprocal polynomials and some work of D. Shanks.


References [Enhancements On Off] (What's this?)

  • [1] W. W. Adams & D. Shanks, "Strong primality tests that are not sufficient," Math. Comp., v. 39, 1982, pp. 255-300. MR 658231 (84c:10007)
  • [2] E. Berlekamp, "Factoring polynomials over finite fields," Bell System Tech. J., v. 46, 1967, pp. 1853-1859. MR 0219231 (36:2314)
  • [3] L. Carlitz, "A special quartic congruence," Math. Scand., v. 4, 1956, pp. 243-246. MR 0090601 (19:837e)
  • [4] B. N. Delone & D. K. Fadeev, The Theory of Irrationalities of the Third Degree, Transl. Math. Monographs, vol. 10, Amer. Math. Soc., Providence, R. I., 1964. MR 0160744 (28:3955)
  • [5] D. E. Knuth, Seminumerical Algorithms, 2nd ed., Addison-Wesley, Reading, Mass., 1980. MR 633878 (83i:68003)
  • [6] S. Schwarz, "Sur le nombre des racines et des facteurs irréductibles d'une congruence donnée," Časopis Pěst. Mat. Fys., v. 69, 1940, pp. 128-145. MR 0004818 (3:66a)
  • [7] D. Shanks, "Dihedral quartic approximations and series for $ \pi $," J. Number Theory, v. 14, 1982, pp. 397-423. MR 660385 (83k:12010)
  • [8] D. Shanks, Prime-Splitting in Associated Cubic and Quartic Fields: Some Implications and Some Techniques. (To appear.)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 12E10, 11R09, 11R27

Retrieve articles in all journals with MSC: 12E10, 11R09, 11R27


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1984-0744941-3
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society