Semidiscrete and single step fully discrete approximations for second order hyperbolic equations with time-dependent coefficients

Author:
Laurence A. Bales

Journal:
Math. Comp. **43** (1984), 383-414

MSC:
Primary 65M60; Secondary 65M20

MathSciNet review:
758190

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: norm error estimates are proved for finite element approximations to the solutions of initial boundary value problems for second order hyperbolic partial differential equations with time-dependent coefficients. Optimal order rates of convergence are shown for semidiscrete and single step fully discrete schemes using specially constructed initial data. The initial data are designed so that the data used for the fully discrete equation is reasonable to compute and so that the optimal order estimates can be proved.

**[1]**Garth A. Baker,*Error estimates for finite element methods for second order hyperbolic equations*, SIAM J. Numer. Anal.**13**(1976), no. 4, 564–576. MR**0423836****[2]**Garth A. Baker and James H. Bramble,*Semidiscrete and single step fully discrete approximations for second order hyperbolic equations*, RAIRO Anal. Numér.**13**(1979), no. 2, 75–100 (English, with French summary). MR**533876****[3]**Garth A. Baker, James H. Bramble, and Vidar Thomée,*Single step Galerkin approximations for parabolic problems*, Math. Comp.**31**(1977), no. 140, 818–847. MR**0448947**, 10.1090/S0025-5718-1977-0448947-X**[4]**Garth A. Baker, Vassilios A. Dougalis, and Steven M. Serbin,*High order accurate two-step approximations for hyperbolic equations*, RAIRO Anal. Numér.**13**(1979), no. 3, 201–226 (English, with French summary). MR**543933****[5]**James H. Bramble and Peter H. Sammon,*Efficient higher order single step methods for parabolic problems. I*, Math. Comp.**35**(1980), no. 151, 655–677. MR**572848**, 10.1090/S0025-5718-1980-0572848-X**[6]**J. H. Bramble, A. H. Schatz, V. Thomée, and L. B. Wahlbin,*Some convergence estimates for semidiscrete Galerkin type approximations for parabolic equations*, SIAM J. Numer. Anal.**14**(1977), no. 2, 218–241. MR**0448926****[7]**M. Crouzeix,*Sur l'Approximation des Équations Différentielles Opérationnelles Linéaires par des Méthodes de Runge-Kutta*, Thèse, Université de Paris VI, 1975.**[8]**Vassilios A. Dougalis,*Multistep-Galerkin methods for hyperbolic equations*, Math. Comp.**33**(1979), no. 146, 563–584. MR**521277**, 10.1090/S0025-5718-1979-0521277-5**[9]**Vassilios A. Dougalis and Steven M. Serbin,*Two-step high-order accurate full discretizations of second-order hyperbolic equations*, Advances in computer methods for partial differential equations, III (Proc. Third IMACS Internat. Sympos., Lehigh Univ., Bethlehem, Pa., 1979), IMACS, New Brunswick, N.J., 1979, pp. 214–220. MR**603474****[10]**Jim Douglas Jr., Todd Dupont, and Richard E. Ewing,*Incomplete iteration for time-stepping a Galerkin method for a quasilinear parabolic problem*, SIAM J. Numer. Anal.**16**(1979), no. 3, 503–522. MR**530483**, 10.1137/0716039**[11]**Todd Dupont,*𝐿²-estimates for Galerkin methods for second order hyperbolic equations*, SIAM J. Numer. Anal.**10**(1973), 880–889. MR**0349045****[12]**E. Gekeler,*Linear multistep methods and Galerkin procedures for initial boundary value problems*, SIAM J. Numer. Anal.**13**(1976), no. 4, 536–548. MR**0431749****[13]**E. Gekeler,*Galerkin-Runge-Kutta methods and hyperbolic initial boundary value problems*, Computing**18**(1977), no. 1, 79–88 (English, with German summary). MR**0438739****[14]**Gianni Gilardi,*Teoremi di regolarità per la soluzione di un’equazione differenziale astratta lineare del secondo ordine*, Ist. Lombardo Accad. Sci. Lett. Rend. A**106**(1972), 641–675 (Italian). MR**0333386****[15]**Louis A. Hageman and David M. Young,*Applied iterative methods*, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. Computer Science and Applied Mathematics. MR**630192****[16]**J. D. Lambert,*Computational methods in ordinary differential equations*, John Wiley & Sons, London-New York-Sydney, 1973. Introductory Mathematics for Scientists and Engineers. MR**0423815****[17]**J. L. Lions, E. Magenes,*Nonhomogeneous Boundary Value Problems and Applications*, Vol. I, Springer-Verlag, Berlin and New York, 1972.**[18]**J. L. Lions & E. Magenes,*Nonhomogeneous Boundary Value Problems and Applications*, Vol. II, Springer-Verlag, Berlin and New York, 1972.**[19]**Ming You Huang and Vidar Thomée,*Some convergence estimates for semidiscrete type schemes for time-dependent nonselfadjoint parabolic equations*, Math. Comp.**37**(1981), no. 156, 327–346. MR**628699**, 10.1090/S0025-5718-1981-0628699-1**[20]**P. H. Sammon,*Approximations for Parabolic Equations with Time-Dependent Coefficients*, Ph.D. Thesis, Cornell University, 1978.**[21]**Peter H. Sammon,*Convergence estimates for semidiscrete parabolic equation approximations*, SIAM J. Numer. Anal.**19**(1982), no. 1, 68–92. MR**646595**, 10.1137/0719002**[22]**Miloš Zlámal,*Finite element multistep discretizations of parabolic boundary value problems*, Math. Comp.**29**(1975), 350–359. MR**0371105**, 10.1090/S0025-5718-1975-0371105-2

Retrieve articles in *Mathematics of Computation*
with MSC:
65M60,
65M20

Retrieve articles in all journals with MSC: 65M60, 65M20

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1984-0758190-6

Article copyright:
© Copyright 1984
American Mathematical Society