Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Semidiscrete and single step fully discrete approximations for second order hyperbolic equations with time-dependent coefficients


Author: Laurence A. Bales
Journal: Math. Comp. 43 (1984), 383-414
MSC: Primary 65M60; Secondary 65M20
DOI: https://doi.org/10.1090/S0025-5718-1984-0758190-6
MathSciNet review: 758190
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: $ {L^2}$ norm error estimates are proved for finite element approximations to the solutions of initial boundary value problems for second order hyperbolic partial differential equations with time-dependent coefficients. Optimal order rates of convergence are shown for semidiscrete and single step fully discrete schemes using specially constructed initial data. The initial data are designed so that the data used for the fully discrete equation is reasonable to compute and so that the optimal order estimates can be proved.


References [Enhancements On Off] (What's this?)

  • [1] G. A. Baker, "Error estimates for finite element methods for second order hyperbolic equations," SIAM J. Numer. Anal., v. 13, 1976, pp. 564-576. MR 0423836 (54:11810)
  • [2] G. A. Baker & J. H. Bramble, "Semidiscrete and single step fully discrete approximations for second order hyperbolic equations," RAIRO Anal. Numér., v. 13, 1979, pp. 75-100. MR 533876 (80f:65115)
  • [3] G. A. Baker, J. H. Bramble & V. Thomée, "Single step Galerkin approximations for parabolic problems," Math. Comp., v. 31, 1977, pp. 818-847. MR 0448947 (56:7252)
  • [4] G. A. Baker, V. A. Dougalis & S. M. Serbin, "High order accurate two-step approximations for hyperbolic equations," RAIRO Anal. Numér., v. 13, 1979, pp. 201-206. MR 543933 (81c:65044)
  • [5] J. H. Bramble & P. H. Sammon, "Efficient higher order single step methods for parabolic problems: Part I," Math. Comp., v. 35, 1980, pp. 655-677. MR 572848 (81h:65110)
  • [6] J. H. Bramble, A. H. Schatz, V. Thomée & L. B. Wahlbin, "Some convergence estimates for semidiscrete Galerkin type approximations for parabolic equations," SIAM J. Numer. Anal., v. 14, 1977, pp. 218-241. MR 0448926 (56:7231)
  • [7] M. Crouzeix, Sur l'Approximation des Équations Différentielles Opérationnelles Linéaires par des Méthodes de Runge-Kutta, Thèse, Université de Paris VI, 1975.
  • [8] V. A. Dougalis, "Multistep Galerkin methods for hyperbolic equations," Math. Comp., v. 33, 1979, pp. 563-584. MR 521277 (81b:65081)
  • [9] V. A. Dougalis & S. M. Serbin, "Two-step high order accurate full discretizations of second order hyperbolic equations," Proc. 3rd IMACS Symposium, Advances in Computer Methods for Partial Differential Equations (R. Vichnevetsky and R. S. Stepleman, eds.), IMACS, 1979, pp. 214-220. MR 603474 (82b:65080)
  • [10] J. Douglas, Jr., T. Dupont & R. E. Ewing, "Incomplete iteration for time-stepping a Galerkin method for a quasilinear parabolic problem," SIAM J. Numer. Anal., v. 16, 1979, pp. 503-522. MR 530483 (80f:65117)
  • [11] T. Dupont, "$ {L^2}$-estimates for Galerkin methods for second order hyperbolic equations," SIAM J. Numer. Anal., v. 10, 1973, pp. 880-889. MR 0349045 (50:1539)
  • [12] E. Gekeler, "Linear multistep methods and Galerkin procedures for initial boundary value problems," SIAM J. Numer. Anal., v. 13, 1976, pp. 536-548. MR 0431749 (55:4744)
  • [13] E. Gekeler, "Galerkin-Runge-Kutta methods and hyperbolic initial boundary value problems," Computing, v. 18, 1977, pp. 79-88. MR 0438739 (55:11646)
  • [14] G. Gilardi, "Teoremi di regolarità per la soluzione di un'equazione differenziale astratta lineare del secondo ordine," Istit. Lombardo Accad. Sci. Lett. Rend. A, v. 106, 1972, pp. 641-675. MR 0333386 (48:11711)
  • [15] L. A. Hageman & D. M. Young, Applied Iterative Methods, Academic Press, New York, 1981. MR 630192 (83c:65064)
  • [16] J. D. Lambert, Computational Methods in Ordinary Differential Equations, Wiley, New York, 1973. MR 0423815 (54:11789)
  • [17] J. L. Lions, E. Magenes, Nonhomogeneous Boundary Value Problems and Applications, Vol. I, Springer-Verlag, Berlin and New York, 1972.
  • [18] J. L. Lions & E. Magenes, Nonhomogeneous Boundary Value Problems and Applications, Vol. II, Springer-Verlag, Berlin and New York, 1972.
  • [19] H. Mingyou & V. Thomée, "Some convergence estimates for semidiscrete type schemes for time-dependent nonselfadjoint parabolic equations," Math. Comp., v. 37, 1981, pp. 327-346. MR 628699 (82i:65060)
  • [20] P. H. Sammon, Approximations for Parabolic Equations with Time-Dependent Coefficients, Ph.D. Thesis, Cornell University, 1978.
  • [21] P. H. Sammon, "Convergence estimates for semidiscrete parabolic equation approximations," SIAM J. Numer. Anal., v. 19, 1982, pp. 68-92. MR 646595 (83g:65094)
  • [22] M. Zlámal, "Finite element multistep discretizations of parabolic boundary value problems," Math. Comp., v. 29, 1975, pp. 350-359. MR 0371105 (51:7326)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65M60, 65M20

Retrieve articles in all journals with MSC: 65M60, 65M20


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1984-0758190-6
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society