Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



A new scalar potential formulation of the magnetostatic field problem

Author: Joseph E. Pasciak
Journal: Math. Comp. 43 (1984), 433-445
MSC: Primary 78A30; Secondary 65N30
MathSciNet review: 758192
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A new method for approximating magnetostatic field problems is given in this paper. The new method approximates the scalar potential for the magnetic intensity and is based on a volume integral formulation. The derivation of the new computational method uses the spectral properties of the relevant integral operator. The corresponding algorithm is similar to that obtained from coupled differential and boundary integral approaches. Convergence and stability theorems are proven. Finally, convergence results in actual computations are compared with results for the usual volume integral method used in GFUN3D.

References [Enhancements On Off] (What's this?)

  • [1] A. G. Armstrong, A. M. Collie, C. J. Diserens, N. J. Newman, M. J. Simkin & C. W. Trowbridge, New Developments in the Magnet Design Program GFUN, Rutherford Laboratory Report No. RL-79-097.
  • [2] J. H. Bramble & J. E. Pasciak, "A new computational approach for the linearized scalar potential formulation of the magnetostatic field problem," IEEE Trans. Mag, v. Mag-18, 1982, pp. 357-361.
  • [3] F. Brezzi, C. Johnson & J. C. Nedelec, On the Coupling of Boundary Integral and Finite Element Methods, Rapport interne #39, École Polytechnique, 1978. MR 566158 (81e:65055a)
  • [4] M. V. K. Chari & P. P. Silvester (Editors), Finite Elements in Electrical and Magnetic Field Problems, Wiley, New York, 1980. MR 589746 (81j:78009)
  • [5] M. J. Friedman, "Finite element formulation of the general magnetostatic problem in the space of generalized solenoidal vector functions," Math. Comp., v. 43, 1984, pp. 415-431. MR 758191 (86f:78008)
  • [6] M. J. Friedman, "Mathematical study of the nonlinear singular integral magnetic field equation I," SIAM J. Appl. Math., v. 39, 1980, pp. 14-20. MR 585825 (81m:78006)
  • [7] M. J. Friedman & J. E. Pasciak, "Spectral properties for the magnetization integral operator," Math. Comp., v. 43, 1984, pp. 447-453. MR 758193 (86f:78007)
  • [8] R. Glowinski & A. Marrocco, "Analyse numérique du champ magnétique d'un alternateur par éléments finis et surrelaxation ponctuelle non linéaire," Comput. Methods Appl. Mech. Engrg., v. 3, 1974, pp. 55-85. MR 0413547 (54:1661)
  • [9] J. L. Lions & E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Springer-Verlag, New York, 1972.
  • [10] J. Necas, Les Méthodes Directes en Théorie des Équations Elliptiques, Masson, Paris, 1967.
  • [11] J. Pasciak, "An iterative algorithm for the volume integral method for magnetostatics problems," Comput. Math. Appl., v. 8, 1982, pp. 283-290. MR 679401 (83k:78012)
  • [12] J. Simkin & C. W. Trowbridge, Three Dimensional Computer Program (TOSCA) for Nonlinear Electromagnetic Fields, Rutherford Laboratory Report No. RL-79-097.
  • [13] C. W. Trowbridge, Progress in Magnet Design by Computers, Proc. Fourth Internat. Conf. Magnet. Tech., U.S. Atomic Energy Commission Rep. Conf-720908, 1972, pp. 555-565.
  • [14] M. M. Vainberg, Variational Method and Method of Monotone Operators in the Theory of Nonlinear Equations, Wiley, New York, 1973.
  • [15] V. S. Vladimirov, Equations of Mathematical Physics, Marcel Dekker, New York, 1971. MR 0268497 (42:3394)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 78A30, 65N30

Retrieve articles in all journals with MSC: 78A30, 65N30

Additional Information

Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society