Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Spectral properties for the magnetization integral operator


Authors: Mark J. Friedman and Joseph E. Pasciak
Journal: Math. Comp. 43 (1984), 447-453
MSC: Primary 78A30; Secondary 47G05
DOI: https://doi.org/10.1090/S0025-5718-1984-0758193-1
MathSciNet review: 758193
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We analyze the spectrum of a certain singular integral operator on the space $ {({L^2}(\Omega ))^3}$ where $ \Omega $ is contained in three dimensional Euclidean space and has a Lipschitz continuous boundary. This operator arises in the integral formulation of the magnetostatic field problem. We decompose $ {({L^2}(\Omega ))^3}$ into invariant subspaces: in one where the operator is the zero map; in one, the identity map; and in one where the operator is positive definite and bounded. These results give rise to the formulation of new efficient numerical techniques for approximating nonlinear magnetostatic field problems [5], [6], [12].


References [Enhancements On Off] (What's this?)

  • [1] A. G. Armstrong, A. M. Collie, C. J. Diserens, N. J. Newman, M. Simkin & C. W. Trowbridge, New Developments in the Magnet Design Program GFUN, Rutherford Laboratory Report No. RL-5060.
  • [2] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, Vol. 4, North-Holland, Amsterdam, 1978. MR 0520174 (58:25001)
  • [3] M. J. Friedman, "Mathematical study of the nonlinear singular integral magnetic field equation I," SIAM J. Appl. Math., v. 39, 1980, pp. 14-20. MR 585825 (81m:78006)
  • [4] M. J. Friedman, "Mathematical study of the nonlinear singular integral magnetic field equation III," SIAM J. Math. Anal., v. 12, 1981, pp. 536-540. MR 617712 (83i:78006b)
  • [5] M. J. Friedman & J. S. Colonias, "On the coupled differential-integral equations for the solution of the general magnetostatic problem," IEEE Trans. Mag., v. Mag-18, No. 2, March 1982, pp. 336-339.
  • [6] M. J. Friedman, "Finite element formulation of the general magnetostatic problem in the space of solenoidal vector functions," Math. Comp., v. 43, 1984, pp. 415-431. MR 758191 (86f:78008)
  • [7] J. L. Lions & E. Magenes, Nonhomogeneous Boundary Value Problems and Applications, Vol. 1, Springer-Verlag, New York, 1972.
  • [8] S. G. Mikhlin, Multidimensional Singular Integrals and Integral Equations, Pergamon Press, Oxford, New York, 1965. MR 0185399 (32:2866)
  • [9] J. Nečas, Les Méthodes Directes en Théorie des Équations Elliptiques, Masson, Paris, 1967.
  • [10] J. C. Nedelec, Approximation des Équations Intégrales en Mécanique et en Physique, Centre de Mathématiques Appliquées, École Polytechnique, Palaiseau, 1977. MR 1018187 (90i:78035)
  • [11] J. Pasciak, "An iterative algorithm for the volume integral method for magnetostatics problems," Comput. Math. Appl., v. 8, 1982, pp. 283-290. MR 679401 (83k:78012)
  • [12] J. Pasciak, "A new scalar potential formulation of the magnetostatic field problem," Math. Comp., v. 43, 1984, pp. 433-445. MR 758192 (86f:78009)
  • [13] R. Temam, On the Theory and Numerical Analysis of the Navier-Stokes Equations, North-Holland, Amsterdam, 1977. MR 769654 (86m:76003)
  • [14] V. S. Vladimirov, Equations of Mathematical Physics, Marcel Dekker, New York, 1971. MR 0268497 (42:3394)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 78A30, 47G05

Retrieve articles in all journals with MSC: 78A30, 47G05


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1984-0758193-1
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society