Decay rates for inverses of band matrices

Authors:
Stephen Demko, William F. Moss and Philip W. Smith

Journal:
Math. Comp. **43** (1984), 491-499

MSC:
Primary 15A09; Secondary 15A60, 65F15

DOI:
https://doi.org/10.1090/S0025-5718-1984-0758197-9

MathSciNet review:
758197

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Spectral theory and classical approximation theory are used to give a new proof of the exponential decay of the entries of the inverse of band matrices. The rate of decay of can be bounded in terms of the (essential) spectrum of for general *A* and in terms of the (essential) spectrum of *A* for positive definite *A*. In the positive definite case the bound can be attained. These results are used to establish the exponential decay for a class of generalized eigenvalue problems and to establish exponential decay for certain sparse but nonbanded matrices. We also establish decay rates for certain generalized inverses.

**[1]**Frank F. Bonsall and John Duncan,*Complete normed algebras*, Springer-Verlag, New York-Heidelberg, 1973. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 80. MR**0423029****[2]**Adi Ben-Israel and Thomas N. E. Greville,*Generalized inverses: theory and applications*, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. Pure and Applied Mathematics. MR**0396607****[3]**Carl de Boor,*Odd-degree spline interpolation at a biinfinite knot sequence*, Approximation theory (Proc. Internat. Colloq., Inst. Angew. Math., Univ. Bonn, Bonn, 1976) Springer, Berlin, 1976, pp. 30–53. MR**0613677****[4]**C. de Boor, "A bound on the -norm of the -approximation by splines in terms of a global mesh ratio,"*Math. Comp.*, v. 30, 1976, pp. 687-694.**[5]**Carl de Boor,*Dichotomies for band matrices*, SIAM J. Numer. Anal.**17**(1980), no. 6, 894–907. MR**595452**, https://doi.org/10.1137/0717074**[6]**Stephen Demko,*Inverses of band matrices and local convergence of spline projections*, SIAM J. Numer. Anal.**14**(1977), no. 4, 616–619. MR**0455281**, https://doi.org/10.1137/0714041**[7]**Jean Descloux,*On finite element matrices*, SIAM J. Numer. Anal.**9**(1972), 260–265. MR**0309292**, https://doi.org/10.1137/0709025**[8]**P. A. Fillmore, J. G. Stampfli, and J. P. Williams,*On the essential numerical range, the essential spectrum, and a problem of Halmos*, Acta Sci. Math. (Szeged)**33**(1972), 179–192. MR**0322534****[9]**I. C. Gohberg and I. A. Fel′dman,*Convolution equations and projection methods for their solution*, American Mathematical Society, Providence, R.I., 1974. Translated from the Russian by F. M. Goldware; Translations of Mathematical Monographs, Vol. 41. MR**0355675****[10]**K. Höllig,*𝐿_{∞}-boundedness of 𝐿₂-projections on splines for a geometric mesh*, J. Approx. Theory**33**(1981), no. 4, 318–333. MR**646153**, https://doi.org/10.1016/0021-9045(81)90063-0**[11]**W. J. Kammerer and G. W. Reddien Jr.,*Local convergence of smooth cubic spline interpolates*, SIAM J. Numer. Anal.**9**(1972), 687–694. MR**0317509**, https://doi.org/10.1137/0709057**[12]**D. Kershaw,*Inequalities on the elements of the inverse of a certain tridiagonal matrix*, Math. Comp.**24**(1970), 155–158. MR**0258260**, https://doi.org/10.1090/S0025-5718-1970-0258260-5**[13]**A. I. Markushevich,*Theory of functions of a complex variable. Vol. III*, Revised English edition, translated and edited by Richard A. Silverman, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1967. MR**0215964****[14]**Günter Meinardus,*Approximation of functions: Theory and numerical methods*, Expanded translation of the German edition. Translated by Larry L. Schumaker. Springer Tracts in Natural Philosophy, Vol. 13, Springer-Verlag New York, Inc., New York, 1967. MR**0217482****[15]**Boris Mityagin,*Quadratic pencils and least-squares piecewise-polynomial approximation*, Math. Comp.**40**(1983), no. 161, 283–300. MR**679446**, https://doi.org/10.1090/S0025-5718-1983-0679446-0**[16]**Walter Rudin,*Functional analysis*, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. McGraw-Hill Series in Higher Mathematics. MR**0365062**

Retrieve articles in *Mathematics of Computation*
with MSC:
15A09,
15A60,
65F15

Retrieve articles in all journals with MSC: 15A09, 15A60, 65F15

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1984-0758197-9

Article copyright:
© Copyright 1984
American Mathematical Society