Decay rates for inverses of band matrices

Authors:
Stephen Demko, William F. Moss and Philip W. Smith

Journal:
Math. Comp. **43** (1984), 491-499

MSC:
Primary 15A09; Secondary 15A60, 65F15

DOI:
https://doi.org/10.1090/S0025-5718-1984-0758197-9

MathSciNet review:
758197

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Spectral theory and classical approximation theory are used to give a new proof of the exponential decay of the entries of the inverse of band matrices. The rate of decay of can be bounded in terms of the (essential) spectrum of for general *A* and in terms of the (essential) spectrum of *A* for positive definite *A*. In the positive definite case the bound can be attained. These results are used to establish the exponential decay for a class of generalized eigenvalue problems and to establish exponential decay for certain sparse but nonbanded matrices. We also establish decay rates for certain generalized inverses.

**[1]**F. F. Bonsall & J. Duncan,*Complete Normed Algebras*, Springer-Verlag, New York, 1973. MR**0423029 (54:11013)****[2]**A. Ben-Israel & T. N. E. Greville,*Generalized Inverses, Theory and Applications*, Wiley-Interscience, New York, 1973. MR**0396607 (53:469)****[3]**C. de Boor, "Odd degree spline interpolation at a biinfinite knot sequence," in*Approximation Theory*(R. Schaback and K. Scherer, eds.), Lecture Notes in Math., Vol. 556, Springer, Heidelberg, 1976, pp. 30-53. MR**0613677 (58:29610)****[4]**C. de Boor, "A bound on the -norm of the -approximation by splines in terms of a global mesh ratio,"*Math. Comp.*, v. 30, 1976, pp. 687-694.**[5]**C. de Boor, "Dichotomies for band matrices,"*SIAM J. Numer. Anal.*, v. 17, 1980, pp. 894-907. MR**595452 (83g:41010)****[6]**S. Demko, "Inverses of band matrices and local convergence of spline projections,"*SIAM J. Numer. Anal.*, v. 14, 1977, pp. 616-619. MR**0455281 (56:13520)****[7]**J. Descloux, "On finite element matrices,"*SIAM J. Numer. Anal.*, v. 9, 1972, pp. 260-265. MR**0309292 (46:8402)****[8]**P. A. Fillmore, J. G. Stampfli & I. P. Williams, "On the essential numerical range, the essential spectrum, and a problem of Halmos,"*Acta Sci. Math.*(Szeged), v. 33, 1972, pp. 179-192. MR**0322534 (48:896)****[9]**I. C. Gohberg & I. A. Feldman,*Convolution Equations and Projection Methods for Their Solution*, Transl. Math. Monographs, Vol. 41, Amer. Math. Soc., Providence, R. I., 1974. MR**0355675 (50:8149)****[10]**K. Hollig, " -boundedness of projections on splines for a geometric mesh,"*J. Approx. Theory*, v. 33, 1981, pp. 318-333. MR**646153 (83j:41010)****[11]**W. J. Kamerer & G. W. Reddien, Jr., "Local convergence of smooth cubic spline interpolants,"*SIAM J. Numer. Anal.*, v. 9, 1972, pp. 687-694. MR**0317509 (47:6056)****[12]**D. Kershaw, "Inequalities on the elements of the inverse of a certain tridiagonal matrix,"*Math. Comp.*, v. 24, 1970, pp. 155-158. MR**0258260 (41:2907)****[13]**A. I. Markushevich,*Theory of Functions of a Complex Variable*, Vol. III, Prentice-Hall, Englewood Cliffs, N. J., 1967. MR**0215964 (35:6799)****[14]**G. Meinardus,*Approximation of Functions, Theory and Numerical Methods*, translated by L. L. Schumaker, Springer-Verlag, New York, 1967. MR**0217482 (36:571)****[15]**B. Mityagin, "Quadratic pencils and least-squares piecewise-polynomial approximation,"*Math. Comp.*, v. 40, 1983, pp. 283-300. MR**679446 (84c:41006)****[16]**W. Rudin,*Functional Analysis*, McGraw-Hill, New York, 1973. MR**0365062 (51:1315)**

Retrieve articles in *Mathematics of Computation*
with MSC:
15A09,
15A60,
65F15

Retrieve articles in all journals with MSC: 15A09, 15A60, 65F15

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1984-0758197-9

Article copyright:
© Copyright 1984
American Mathematical Society