Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Decay rates for inverses of band matrices


Authors: Stephen Demko, William F. Moss and Philip W. Smith
Journal: Math. Comp. 43 (1984), 491-499
MSC: Primary 15A09; Secondary 15A60, 65F15
DOI: https://doi.org/10.1090/S0025-5718-1984-0758197-9
MathSciNet review: 758197
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Spectral theory and classical approximation theory are used to give a new proof of the exponential decay of the entries of the inverse of band matrices. The rate of decay of $ {A^{ - 1}}$ can be bounded in terms of the (essential) spectrum of $ A{A^\ast}$ for general A and in terms of the (essential) spectrum of A for positive definite A. In the positive definite case the bound can be attained. These results are used to establish the exponential decay for a class of generalized eigenvalue problems and to establish exponential decay for certain sparse but nonbanded matrices. We also establish decay rates for certain generalized inverses.


References [Enhancements On Off] (What's this?)

  • [1] F. F. Bonsall & J. Duncan, Complete Normed Algebras, Springer-Verlag, New York, 1973. MR 0423029 (54:11013)
  • [2] A. Ben-Israel & T. N. E. Greville, Generalized Inverses, Theory and Applications, Wiley-Interscience, New York, 1973. MR 0396607 (53:469)
  • [3] C. de Boor, "Odd degree spline interpolation at a biinfinite knot sequence," in Approximation Theory (R. Schaback and K. Scherer, eds.), Lecture Notes in Math., Vol. 556, Springer, Heidelberg, 1976, pp. 30-53. MR 0613677 (58:29610)
  • [4] C. de Boor, "A bound on the $ {L_\infty }$-norm of the $ {L_2}$-approximation by splines in terms of a global mesh ratio," Math. Comp., v. 30, 1976, pp. 687-694.
  • [5] C. de Boor, "Dichotomies for band matrices," SIAM J. Numer. Anal., v. 17, 1980, pp. 894-907. MR 595452 (83g:41010)
  • [6] S. Demko, "Inverses of band matrices and local convergence of spline projections," SIAM J. Numer. Anal., v. 14, 1977, pp. 616-619. MR 0455281 (56:13520)
  • [7] J. Descloux, "On finite element matrices," SIAM J. Numer. Anal., v. 9, 1972, pp. 260-265. MR 0309292 (46:8402)
  • [8] P. A. Fillmore, J. G. Stampfli & I. P. Williams, "On the essential numerical range, the essential spectrum, and a problem of Halmos," Acta Sci. Math. (Szeged), v. 33, 1972, pp. 179-192. MR 0322534 (48:896)
  • [9] I. C. Gohberg & I. A. Feldman, Convolution Equations and Projection Methods for Their Solution, Transl. Math. Monographs, Vol. 41, Amer. Math. Soc., Providence, R. I., 1974. MR 0355675 (50:8149)
  • [10] K. Hollig, " $ {L_\infty }$-boundedness of $ {L_2}$ projections on splines for a geometric mesh," J. Approx. Theory, v. 33, 1981, pp. 318-333. MR 646153 (83j:41010)
  • [11] W. J. Kamerer & G. W. Reddien, Jr., "Local convergence of smooth cubic spline interpolants," SIAM J. Numer. Anal., v. 9, 1972, pp. 687-694. MR 0317509 (47:6056)
  • [12] D. Kershaw, "Inequalities on the elements of the inverse of a certain tridiagonal matrix," Math. Comp., v. 24, 1970, pp. 155-158. MR 0258260 (41:2907)
  • [13] A. I. Markushevich, Theory of Functions of a Complex Variable, Vol. III, Prentice-Hall, Englewood Cliffs, N. J., 1967. MR 0215964 (35:6799)
  • [14] G. Meinardus, Approximation of Functions, Theory and Numerical Methods, translated by L. L. Schumaker, Springer-Verlag, New York, 1967. MR 0217482 (36:571)
  • [15] B. Mityagin, "Quadratic pencils and least-squares piecewise-polynomial approximation," Math. Comp., v. 40, 1983, pp. 283-300. MR 679446 (84c:41006)
  • [16] W. Rudin, Functional Analysis, McGraw-Hill, New York, 1973. MR 0365062 (51:1315)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 15A09, 15A60, 65F15

Retrieve articles in all journals with MSC: 15A09, 15A60, 65F15


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1984-0758197-9
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society