An algorithm for the second immanant

Authors:
Robert Grone and Russell Merris

Journal:
Math. Comp. **43** (1984), 589-591

MSC:
Primary 15A15; Secondary 05C50, 20C30

MathSciNet review:
758206

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be an irreducible character of the symmetric group . For an *n*-by-*n* matrix, define the immanant of *A* corresponding to by

**[1]**Dragoš M. Cvetković, Michael Doob, and Horst Sachs,*Spectra of graphs*, Pure and Applied Mathematics, vol. 87, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. Theory and application. MR**572262****[2]**W. Hartmann, private communication.**[3]**Russell Merris,*On vanishing decomposable symmetrized tensors*, Linear and Multilinear Algebra**5**(1977/78), no. 2, 79–86. MR**0573028****[4]**Russell Merris,*Representations of 𝐺𝐿(𝑛,𝑅) and generalized matrix functions of class MPW*, Linear and Multilinear Algebra**11**(1982), no. 2, 133–141. MR**650727**, 10.1080/03081088208817438**[5]**Russell Merris,*Single-hook characters and Hamiltonian circuits*, Linear and Multilinear Algebra**14**(1983), no. 1, 21–35. MR**712823**, 10.1080/03081088308817540**[6]**Russell Merris, Kenneth R. Rebman, and William Watkins,*Permanental polynomials of graphs*, Linear Algebra Appl.**38**(1981), 273–288. MR**636042**, 10.1016/0024-3795(81)90026-4**[7]**L. G. Valiant,*The complexity of computing the permanent*, Theoret. Comput. Sci.**8**(1979), no. 2, 189–201. MR**526203**, 10.1016/0304-3975(79)90044-6

Retrieve articles in *Mathematics of Computation*
with MSC:
15A15,
05C50,
20C30

Retrieve articles in all journals with MSC: 15A15, 05C50, 20C30

Additional Information

DOI:
http://dx.doi.org/10.1090/S0025-5718-1984-0758206-7

Article copyright:
© Copyright 1984
American Mathematical Society