Least squares methods for elliptic systems

Authors:
A. K. Aziz, R. B. Kellogg and A. B. Stephens

Journal:
Math. Comp. **44** (1985), 53-70

MSC:
Primary 65N30; Secondary 76D07

DOI:
https://doi.org/10.1090/S0025-5718-1985-0771030-5

MathSciNet review:
771030

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A weighted least squares method is given for the numerical solution of elliptic partial differential equations of Agmon-Douglis-Nirenberg type and an error analysis is provided. Some examples are given.

**[1]**S. Agmon, A. Douglis & L. Nirenberg, "Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II,"*Comm. Pure Appl. Math.*, v. .17, 1964, pp. 35-92. MR**0162050 (28:5252)****[2]**I. Babuška, J. T. Oden & J. K. Lee, "Mixed-hybrid finite element approximations of second-order boundary value problems,"*Comput. Methods Appl. Mech. Engrg.*, v. 11, 1977, pp. 175-206. MR**0451771 (56:10053)****[3]**G. A. Baker, "Simplified proofs of error estimates for the least squares method for Dirichlet's problem,"*Math. Comp.*, v. 27, 1973, pp. 229-235. MR**0327056 (48:5398)****[4]**J. H. Bramble & J. A. Nitsche, "A generalized Ritz-least-squares method for Dirichlet problems,"*SIAM J. Numer. Anal.*, v. 10, 1973, pp. 81-93. MR**0314284 (47:2836)****[5]**J. H. Bramble & A. H. Schatz, "Rayleigh-Ritz-Galerkin-methods for Dirichlet's problem using subspaces without boundary conditions,"*Comm. Pure Appl. Math.*, v. 23, 1970, pp. 653-675. MR**0267788 (42:2690)****[6]**J. H. Bramble & A. H. Schatz, "Least squares for 2*m*th order elliptic boundary-value problems,"*Math. Comp.*, v. 25, 1971, pp. 1-32. MR**0295591 (45:4657)****[7]**J. H. Bramble & R. Scott, "Simultaneous approximation in scales of Banach spaces,"*Math. Comp.*, v. 32, 1978, pp. 947-954. MR**501990 (80a:65222)****[8]**J. H. Bramble & V. Thomée, "Pointwise bound for discrete Green's functions,"*SIAM J. Numer. Anal.*, v. 6, 1969, pp. 583-590. MR**0263265 (41:7870)****[9]**G. J. Fix, M. D. Gunzburger, & R. A. Nicolaides, "On finite element methods of the least squares type,"*Comput. Math. Appl.*, v. 5, 1979, pp. 87-98. MR**539567 (81b:65103)****[10]**G. J. Fix & E. Stephan,*Finite Element Methods of the Least Squares Type for Regions With Corners*, Report No. 81-41, December 16, 1981, Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, Hampton, Virginia 23665.**[11]**D. C. Jesperson, "A least squares decomposition method for solving elliptic equations,"*Math. Comp.*, v. 31, 1977, pp. 873-880. MR**0461948 (57:1930)****[12]**J. L. Lions & E. Magenes,*Non-Homogeneous Boundary Value Problems and Applications*, Vol. 1, Springer, Berlin, 1972.**[13]**J. Roitberg & Z. Šeftel, "A theorem about the complete set of isomorphisms for systems elliptic in the sense of Douglis and Nirenberg,"*Ukrain. Mat. Zh.*, 1975, pp. 447-450.**[14]**R. Temam,*Navier-Stokes Equations*, North-Holland, Amsterdam, New York, 1977.**[15]**W. L. Wendland,*Elliptic Systems in the Plane*, Pitman, London, 1979. MR**518816 (80h:35053)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65N30,
76D07

Retrieve articles in all journals with MSC: 65N30, 76D07

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1985-0771030-5

Article copyright:
© Copyright 1985
American Mathematical Society