Least squares methods for elliptic systems

Authors:
A. K. Aziz, R. B. Kellogg and A. B. Stephens

Journal:
Math. Comp. **44** (1985), 53-70

MSC:
Primary 65N30; Secondary 76D07

DOI:
https://doi.org/10.1090/S0025-5718-1985-0771030-5

MathSciNet review:
771030

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A weighted least squares method is given for the numerical solution of elliptic partial differential equations of Agmon-Douglis-Nirenberg type and an error analysis is provided. Some examples are given.

**[1]**S. Agmon, A. Douglis, and L. Nirenberg,*Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II*, Comm. Pure Appl. Math.**17**(1964), 35–92. MR**0162050**, https://doi.org/10.1002/cpa.3160170104**[2]**I. Babuška, J. T. Oden, and J. K. Lee,*Mixed-hybrid finite element approximations of second-order elliptic boundary-value problems*, Comput. Methods Appl. Mech. Engrg.**11**(1977), no. 2, 175–206. MR**0451771**, https://doi.org/10.1016/0045-7825(77)90058-5**[3]**Garth A. Baker,*Simplified proofs of error estimates for the least squares method for Dirichlet’s problem*, Math. Comp.**27**(1973), 229–235. MR**0327056**, https://doi.org/10.1090/S0025-5718-1973-0327056-0**[4]**James H. Bramble and Joachim A. Nitsche,*A generalized Ritz-least-squares method for Dirichlet problems*, SIAM J. Numer. Anal.**10**(1973), 81–93. MR**0314284**, https://doi.org/10.1137/0710010**[5]**James H. Bramble and Alfred H. Schatz,*Rayleigh-Ritz-Galerkin methods for Dirichlet’s problem using subspaces without boundary conditions*, Comm. Pure Appl. Math.**23**(1970), 653–675. MR**0267788**, https://doi.org/10.1002/cpa.3160230408**[6]**J. H. Bramble and A. H. Schatz,*Least squares methods for 2𝑚th order elliptic boundary-value problems*, Math. Comp.**25**(1971), 1–32. MR**0295591**, https://doi.org/10.1090/S0025-5718-1971-0295591-8**[7]**James H. Bramble and Ridgway Scott,*Simultaneous approximation in scales of Banach spaces*, Math. Comp.**32**(1978), no. 144, 947–954. MR**501990**, https://doi.org/10.1090/S0025-5718-1978-0501990-5**[8]**J. H. Bramble and V. Thomée,*Pointwise bounds for discrete Green’s functions*, SIAM J. Numer. Anal.**6**(1969), 583–590. MR**0263265**, https://doi.org/10.1137/0706053**[9]**George J. Fix, Max D. Gunzburger, and R. A. Nicolaides,*On finite element methods of the least squares type*, Comput. Math. Appl.**5**(1979), no. 2, 87–98. MR**539567**, https://doi.org/10.1016/0898-1221(79)90062-2**[10]**G. J. Fix & E. Stephan,*Finite Element Methods of the Least Squares Type for Regions With Corners*, Report No. 81-41, December 16, 1981, Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, Hampton, Virginia 23665.**[11]**Dennis C. Jespersen,*A least squares decomposition method for solving elliptic equations*, Math. Comp.**31**(1977), no. 140, 873–880. MR**0461948**, https://doi.org/10.1090/S0025-5718-1977-0461948-0**[12]**J. L. Lions & E. Magenes,*Non-Homogeneous Boundary Value Problems and Applications*, Vol. 1, Springer, Berlin, 1972.**[13]**J. Roitberg & Z. Šeftel, "A theorem about the complete set of isomorphisms for systems elliptic in the sense of Douglis and Nirenberg,"*Ukrain. Mat. Zh.*, 1975, pp. 447-450.**[14]**R. Temam,*Navier-Stokes Equations*, North-Holland, Amsterdam, New York, 1977.**[15]**W. L. Wendland,*Elliptic systems in the plane*, Monographs and Studies in Mathematics, vol. 3, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1979. MR**518816**

Retrieve articles in *Mathematics of Computation*
with MSC:
65N30,
76D07

Retrieve articles in all journals with MSC: 65N30, 76D07

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1985-0771030-5

Article copyright:
© Copyright 1985
American Mathematical Society