Analysis of Some Finite Elements for the Stokes Problem

By Christine Bernardi and Geneviève Raugel

Abstract. We study some finite elements which are used in the approximation of the Stokes problem, so as to obtain error estimates of optimal order.

I. Introduction. Let \(\Omega \) be a bounded polyhedral domain in \(\mathbb{R}^d \), \(d = 2 \) or \(3 \). We consider the standard variational formulation of the stationary Stokes equations: for \(f \) given in \(H^{-1}(\Omega)^d \), find \((u, p) \) in \(H^1_0(\Omega)^d \times L^2_0(\Omega) \) such that

\[
\begin{align*}
\forall v & \in H^1_0(\Omega)^d, \quad v(\text{grad} u, \text{grad} v) - (p, \text{div} v) = (f, v), \\
\forall q & \in L^2_0(\Omega), \quad (q, \text{div} u) = 0,
\end{align*}
\]

where we denote by \((\cdot, \cdot)\) the inner product of \(L^2(\Omega) \) (or \(L^2(\Omega)^d \) or \(L^2(\Omega)^d \)). Hereafter \(L^2_0(\Omega) \) is the space \(\{q \in L^2(\Omega); \int_\Omega q \, dx = 0\} \). Now let \(h \) be a real positive parameter tending to zero. We introduce two finite-dimensional subspaces \(X_h \) and \(M_h \) of \(H^1_0(\Omega)^d \) and \(L^2_0(\Omega) \) respectively, satisfying the usual condition: for any \(q_h \) in \(M_h \), \(q_h \neq 0 \), there exists \(v_h \) in \(X_h \) such that \((q_h, \text{div} v_h) \neq 0 \). We consider the discretized problem: find \((u_h, p_h) \) in \(X_h \times M_h \) such that

\[
\begin{align*}
\forall v_h & \in X_h, \quad v_h(\text{grad} u_h, \text{grad} v_h) - (p_h, \text{div} v_h) = (f, v_h), \\
\forall q_h & \in M_h, \quad (q_h, \text{div} u_h) = 0.
\end{align*}
\]

We recall that problem (1.1) (respectively problem (1.2)) has a unique solution \((u, p) \) in \(H^1_0(\Omega)^d \times L^2_0(\Omega) \) (respectively \((u_h, p_h) \) in \(X_h \times M_h \)). Moreover, when \((u, p) \) belongs to the space \(H^{m+1}(\Omega)^d \times H^m(\Omega) \), it is well-known (see [7]) that the error estimate

\[
\|u - u_h\|_{1,\Omega} + \|p - p_h\|_{0,\Omega} \leq C h^m(\|u\|_{m+1,\Omega} + \|p\|_{m,\Omega})
\]

holds whenever the following additional hypotheses are satisfied:

(H1) for any \(q \) in \(H^m(\Omega) \cap L^2_0(\Omega) \), one has

\[
\inf_{q_h \in M_h} \|q - q_h\|_{0,\Omega} \leq C h^m \|q\|_{m,\Omega};
\]

(H2) there exists a linear operator \(\Pi_h \) from \(H^{m+1}(\Omega)^d \cap H^1_0(\Omega)^d \) into \(X_h \) such that

\[
\forall v \in H^{m+1}(\Omega)^d \cap H^1_0(\Omega)^d, \quad \left\{ \begin{array}{l}
\forall q_h \in M_h, \quad (q_h, \text{div} (v - \Pi_h v)) = 0, \\
\|v - \Pi_h v\|_{1,\Omega} \leq C h^m \|v\|_{m+1,\Omega};
\end{array} \right.
\]

Received May 24, 1983.
1980 Mathematics Subject Classification. Primary 65N30.
(H3) for each q_h in M_h, there exists a function v_h in X_h such that

$$ \langle \text{div } v_h, q_h \rangle \geq \beta \| q_h \|_{0, \Omega} \| v_h \|_{1, \Omega}, $$

where $\beta > 0$ is a constant independent of h.

Our aim is to give some examples of finite-element spaces such that hypotheses (H1), (H2) and (H3) are satisfied. To this end, we introduce a family $(T_h)_h$ of triangulations of Ω, where T_h is made of d-simplices with diameters bounded by h.

For any integer k, $P_k(K)$ denotes the space of polynomials of degree $\leq k$ on K. We set

$$ M^h = \{ q_h \in L^2(\Omega) ; \forall K \in T_h, q_h/K \in P_{m-1}(K) \}. $$

Then hypothesis (H1) is satisfied (see [2] for instance). Finally, we set

$$ X_h = \{ v_h \in C^0(\Omega)^d \cap H^1_0(\Omega)^d ; \forall K \in T_h, v_h/K \in P_K \}; $$

hereafter we study some examples of spaces P_K introduced by Fortin [6] such that hypotheses (H2) and (H3) are satisfied.

More precisely, we give in Section II an example of a simplicial element of order $m = 1$ and, in Section III, an example of a three-dimensional tetrahedral element of order $m = 2$.

From now on we denote by $\| \cdot \|_{m, \Omega}$ and $| \cdot |_{m, \Omega}$ the usual norm and seminorm on the Sobolev space $H^m(\Omega)$.

II. A Simplicial Element of Order 1 ($d = 2$ or 3). Let us consider a d-simplex K with vertices a_1, \ldots and a_{d+1}. For $1 \leq i \leq d + 1$, we denote by λ_i the barycentric coordinate associated with a_i, by F_i the face which does not contain a_i, and by n_i the unit outward normal to F_i, and we set

$$ p_i = n_i \prod_{j=1, j \neq i}^{d+1} \lambda_j. $$

Then, we consider

$$ P_K = P_1(K)^d \oplus \text{Span}(p_i, 1 \leq i \leq d + 1). $$

(Note that dim $P_K = (d + 1)^2$.) As far as the degrees of freedom are concerned, we can choose the values at the vertices a_i, $1 \leq i \leq d + 1$, and the flux through the faces F_i, $1 \leq i \leq d + 1$.

Lemma II.1. For any v in $C^0(K)^d$, there exists a unique $\Pi_K v$ in P_K such that

$$ \begin{cases}
\Pi_K v(a_i) = v(a_i), \\
\int_{F_i} (v - \Pi_K v) \cdot n_i \, d\sigma = 0,
\end{cases} \quad 1 \leq i \leq d + 1. $$

Moreover, $\Pi_K v_{|F_i}$ depends only on $v_{|F_i}$, $1 \leq i \leq d + 1$.

Proof. Let us denote by $\tilde{\Pi}_K v$ the classical Lagrange interpolate of v in $P_1(K)^d$, i.e.,

$$ \tilde{\Pi}_K v = \sum_{i=1}^{d+1} v(a_i) \lambda_i. $$
Then, as the \(p_i \)'s are equal to 0 at any vertex, one has

\[
\Pi_K v = \tilde{\Pi}_K v + \sum_{i=1}^{d+1} \alpha_i p_i,
\]

(II.3) with \(\alpha_i = \left(\int_{F_i} (v - \tilde{\Pi}_K v) \cdot n_i \, d\sigma \right) / \int_{F_i} \prod_{j=1, j \neq i}^{d+1} \lambda_j \, d\sigma. \)

Moreover, on \(F_i \),

\[
\Pi_K v_{/F_i} = \sum_{j=1, j \neq i}^{d+1} v(a_j) \lambda_j + \alpha_i p_i,
\]

so that \(\Pi_K v_{/F_i} \) depends only on \(v(a_j), j \neq i \), and on \(\int_{F_i} v \cdot n_i \, d\sigma \).

Now, for each \(h \), we consider a triangulation \(\mathcal{T}_h \) of \(\Omega \) made of \(d \)-simplices with diameters bounded by \(h \) and we assume that the family \((\mathcal{T}_h)_h \) is regular, i.e., (see [2]) there exists a constant \(\sigma \) such that

(II.4) \[\forall h, \forall K \in \mathcal{T}_h, \quad h_K \leq \sigma \rho_K, \]

where \(h_K \) is the diameter of \(K \), and \(\rho_K \) the diameter of the sphere inscribed in \(K \).

With each \(K \) in \(\mathcal{T}_h \), we associate the space \(P_K \) defined by (II.1); then Lemma II.1 allows us to define an operator \(\Pi_h \) from \(C^0(\Omega)^d \cap H_0^1(\Omega)^d \) into \(X_h \) by

(II.5) \[\forall K \in \mathcal{T}_h, \quad \Pi_h v_{/K} = \Pi_K v. \]

Lemma II.2. The operator \(\Pi_h \) satisfies (H2) for \(m = 1 \).

Proof. Clearly, one has

\[
\int_K \text{div}(v - \Pi_K v) \, dx = \sum_{i=1}^{d+1} \int_{F_i} (v - \Pi_K v) \cdot n_i \, d\sigma = 0,
\]

so that \(\forall q_h \in M_h^{(1)}, (q_h, \text{div}(v - \Pi_h v)) = 0 \).

Moreover, we know that (see [2], for instance), for \(k = 0 \) and \(1 \),

\[
|v - \tilde{\Pi}_K v|_{k, K} \leq C h^{2-k}|v|_{2, K}.
\]

Let us compute \(\Pi_K v - \tilde{\Pi}_K v = \sum_{i=1}^{d+1} \alpha_i p_i \). We consider an affine invertible mapping \(F_K: \hat{x} \mapsto x = B_K \hat{x} + b_K \) which maps the \(d \)-simplex \(\hat{K} = \{ \hat{x} \in \mathbb{R}^d; \forall i, 1 \leq i \leq d, \hat{x}_i \geq 0 \text{ and } \sum_{i=1}^d \hat{x}_i \leq 1 \} \) onto \(K \), and use the notations \(x = F_K(\hat{x}), v = \hat{v} \circ F_K^{-1} \). Clearly, one has

\[
|p_i|_{k, K} = \int_K \left\| D^k \left(\prod_{j=1, j \neq i}^{d+1} \lambda_j \right) \right\|^2 \, dx
\]

\[
\leq C \int_K \left\| D^k \left(\prod_{j=1, j \neq i}^{d+1} \lambda_j \right) \right\|^2 \|B_K^{-1}\|_{2k} \|\det B_K\| d\hat{x} \leq C |\det B_K| \|B_K\|^{-2k}
\]

so that, by the regularity of the family \((\mathcal{T}_h)_h \),

(II.6) \[|p_i|_{k, K} \leq C h_K^{d/2-k}. \]

But, since

\[
\int_{F_i} \prod_{j=1, j \neq i}^{d+1} \lambda_j \, d\sigma = |\det B_{K/F_i}| \int_{F_i} \prod_{j=1, j \neq i}^{d+1} \hat{\lambda}_j \, d\hat{\sigma},
\]
we obtain by (II.3)

$$|\alpha| \leq C |\det B_{K/F}|^{-1} \int_{F_i} |v - \Pi_K v| d\sigma \leq C \int_{F_i} |\hat{v} - \hat{\Pi}_K \hat{v}| d\sigma;$$

therefore, as $P_1(\hat{K})^d$ is invariant under $\hat{\Pi}_K$,

$$|\alpha| \leq C |\hat{v}|_{2, K} \leq C |\det B_K|^{-1/2} \|B_K\|^2 \|v\|_{1, K} \leq Ch^{-d/2}_K \|v\|_{2, K}.$$

The previous inequalities yield, for $k = 0$ and 1,

$$|v - \Pi_K v|_{k, K} \leq Ch^{2-k}_K \|v\|_{2, K},$$

so that

$$\|v - \Pi_K v\|_{1, \Omega} \leq Ch|v|_{2, \Omega}.$$

We recall the proof of the following inequality only for the reader's convenience.

Lemma II.3. For any v in $H^1(K)$, we have

(II.7) $$\|v\|_{0, F_i} \leq C |\text{mes } F_i|^{1/2} \hbar^{-d/2} \left\{ \|v\|_{0, K} + h_K \|v\|_{1, K} \right\}.$$

Proof. As the trace mapping is continuous from $H^1(K)$ into $L^2(F_i)$,

$$\|v\|_{0, F_i}^2 = |\det B_{K/F}| \int_{F_i} \hat{v}^2 d\hat{\sigma} \leq C |\det B_{K/F}| \left\{ \|\hat{v}\|_{0, K}^2 + |\hat{v}|_{1, K}^2 \right\}$$

$$\leq C |\text{mes } F_i| \hbar^{-d} \left\{ \|v\|_{0, K}^2 + h_K \|v\|_{1, K}^2 \right\}.$$

Let us now study the hypothesis (H3). We know (see [7, Chapter I, Lemma 3.2]) that, for each q_h in $M_1^{(1)}$, there exists v in $H^1_0(\Omega)^d$ such that

(II.8) $$\text{div } v = q_h \quad \text{and} \quad \|v\|_{1, \Omega} \leq C \|q_h\|_{0, \Omega}.$$

Hence, the hypothesis (H3) is an immediate consequence of the following

Lemma II.4. For any v in $H^1_0(\Omega)^d$, there exists v_h in X_h such that

(II.9) $$\forall q_h \in M_1^{(1)}, \quad \left\{ (q_h, \text{div}(v - v_h)) = 0 \right. \quad \left. \text{and} \|v_h\|_{1, \Omega} \leq C \|v\|_{1, \Omega}. \right\}$$

Proof. Let us denote by w_h the interpolate of v in the space

$$\left\{ u_h \in C^0(\overline{\Omega}) \cap H^1_0(\Omega); \forall K \in \mathcal{T}_h, u_{h/K} \in P_1(K) \right\}^d,$$

defined by local regularization as in [4] (see [1] for an explicit generalization to the case $d = 3$). By the regularity of the family $(\mathcal{T}_h)_h$, we know that the following local interpolation error holds

(II.10) $$\|v - w_h\|_{0, K} + h_K \|w_h\|_{1, K} \leq Ch \|v\|_{1, \Delta_K},$$

where Δ_K is the union of all K' in \mathcal{T}_h such that $K \cap K' \neq \emptyset$; moreover, each element of \mathcal{T}_h is contained in at most M subsets Δ_K, where M is an integer independent of h.

Then, we consider the element v_h in V_h defined by

$$v_h(a_i) = w_h(a_i),$$

$$\int_{F_i} (v - v_h) \cdot n_i d\sigma = 0, \quad 1 \leq i \leq d + 1,$$
or, in other words, equal on K to

$$\left\{ \begin{array}{l}
\nu_h/K = w_h + \sum_{i=1}^{d+1} \alpha_i p_i \\
\text{with } \alpha_i = \left(\int_{F_i} (v - w_h) \cdot n_i \, d\sigma \right) / \int_{F_i} \prod_{j=1, j \neq i}^{d+1} \lambda_j \, d\sigma.
\end{array} \right.$$

Clearly, one has $\forall q_h \in M_h^{(1)}$, $(q_h, \text{div}(v - v_h)) = 0$. Moreover, by (II.6),

$$\|v_h\|_{1,K} \leq \|w_h\|_{1,K} + \sum_{i=1}^{d+1} |\alpha_i| \|p_i\|_{1,K} \leq \|w_h\|_{1,K} + C h_k^{d/2} \sum_{i=1}^{d+1} |\alpha_i|.$$

But, we also have

$$|\alpha_i| \leq C |\det B_{K/F_i}|^{-1} \int_{F_i} (v - w_h) \cdot n_i \, d\sigma \leq C |\text{mes } F_i|^{-1/2} \|v - w_h\|_{0,F_i}.$$

Lemma II.3 implies

$$(\text{II.11}) \quad |\alpha_i| \leq C h_k^{d/2} \left\{ \|v - w_h\|_{0,K} + h_k \|v - w_h\|_{1,K} \right\}.$$

Finally, we obtain

$$\|v_h\|_{1,K} \leq \|w_h\|_{1,K} + h_k^{-1} \left\{ \|v - w_h\|_{0,K} + h_k \|v - w_h\|_{1,K} \right\},$$

which, together with (II.10), yields $\|v_h\|_{1,\Omega} \leq C \|v\|_{1,\Omega}$.

As assumptions (H1) to (H3) are satisfied with $m = 1$, this element can be used to solve the Stokes problem with an $O(h)$-error estimate.

Remark II.1. In the two-dimensional case, we can also consider a triangulation \mathcal{T}_h of Ω made of triangles and convex quadrilaterals. Then, if K is a triangle, the space P_K is defined by (II.1). If K is a convex quadrilateral with vertices a_1, \ldots and a_4, there exists an invertible mapping F_K in \tilde{Q}_2^2 which maps the unit square $\tilde{K} = [0, 1]^2$ onto K (\tilde{Q}_2 is the space of polynomials spanned by $x_1, x_2, x_3 = 1 - x_1$ and $x_4 = 1 - x_2$); for $1 \leq i \leq 4$, we denote by F_i the edge with vertices a_{i-1} and a_i (of course, $a_0 = a_4$) and by n_i the unit outward normal to F_i, and we set

$$p_i = n_i \left(\tilde{q}_i \circ F_K^{-1} \right), \quad \tilde{q}_i = \prod_{j=1, j \neq i}^4 \tilde{x}_j.$$

Then, we consider

$$(\text{II.12}) \quad P_K = Q_1(K)^2 \oplus \text{Span} \{p_i, 1 \leq i \leq 4\},$$

where $Q_1(K) = \{ \tilde{p} \circ F_K^{-1}, \tilde{p} \in \tilde{Q}_1 \}$ (Note that dim $P_K = 12$). The degrees of freedom can be chosen as previously. If the family $(\mathcal{T}_h)_h$ is regular (see [3] for instance), the previous results are still valid.

III. A Tetrahedral Element of Order 2 ($d = 3$). Let us consider a tetrahedron K with vertices a_1, \ldots and a_4. We use the same notations as in Section II, in particular, we set

$$p_i = n_i \left(\prod_{j=1, j \neq i}^4 \lambda_j \right), \quad 1 \leq i \leq 4;$$

we also introduce the points $a_{ij} = \frac{1}{2} (a_i + a_j), 1 \leq i < j \leq 4$. Then, we consider

$$(\text{III.1}) \quad P_K = P_2(K)^3 \oplus \text{Span} \{p_i, 1 \leq i \leq 4\} \oplus \text{Span} \{\lambda_1 \lambda_2 \lambda_3 \lambda_4\}. $$
(Note that \(\dim P_K = 37 \).) Let us remark that this space generalizes in the three-dimensional case the space studied in [5] for \(d = 2 \). As far as the degrees of freedom are concerned, we choose the values at the vertices \(a_i, 1 \leq i \leq 4 \), and at the midpoints \(a_{ij}, 1 \leq i < j \leq 4 \), the flux through the faces \(F_i, 1 \leq i \leq 4 \), and the moments \(\int_K x_l \text{div}(\cdot) \, dx, 1 \leq l \leq 3 \).

Lemma III.1. For any \(v \) in \(\mathcal{V}_0(K)^3 \cap H^1(K)^3 \), there exists a unique \(\Pi_K v \) in \(P_K \) such that

\[
\begin{align*}
\Pi_K v(a_i) &= v(a_i), & 1 \leq i \leq 4, \\
\Pi_K v(a_{ij}) &= v(a_{ij}), & 1 \leq i < j \leq 4, \\
\int_{F_i} (v - \Pi_K v) \cdot n_i \, d\sigma &= 0, & 1 \leq i \leq 4, \\
\int_K x_l \text{div}(v - \Pi_K v) \, dx &= 0, & 1 \leq l \leq 3.
\end{align*}
\]

Moreover, \(\Pi_K v/F_i \) depends only on \(v/F_i, 1 \leq i \leq 4 \).

Proof. Let us denote by \(\tilde{\Pi}_K v \) the classical Lagrange interpolate of \(v \) in \(P_2(K)^3 \), i.e.,

\[
\tilde{\Pi}_K v = \sum_{i=1}^{4} v(a_i) \lambda_i (2\lambda_i - 1) + \sum_{1 \leq i < j \leq 4} v(a_{ij}) 4 \lambda_i \lambda_j.
\]

Then, as the \(p_i \)'s and \(\lambda_1 \lambda_2 \lambda_3 \lambda_4 \) are equal to 0 on any edge, \(\Pi_K v \) can be written

\[
\Pi_K v = \tilde{\Pi}_K v + \sum_{i=1}^{4} \alpha_i p_i + \beta \lambda_1 \lambda_2 \lambda_3 \lambda_4.
\]

Since \(\lambda_1 \lambda_2 \lambda_3 \lambda_4 \) is equal to 0 on \(\partial K \), we have

\[
\alpha_i = \left(\int_{F_i} (v - \tilde{\Pi}_K v) \cdot n_i \, d\sigma \right) / \int_{F_i} \prod_{j=1, j \neq i}^{4} \lambda_j \, d\sigma, & 1 \leq i \leq 4.
\]

Then, setting

\[
\Pi_K v = \tilde{\Pi}_K v + \sum_{i=1}^{4} \alpha_i p_i,
\]

and using the Green's formula, we obtain

\[
\beta_i = -\left(\int_K x_l \text{div}(v - \tilde{\Pi}_K v) \, dx \right) / \int_K \lambda_1 \lambda_2 \lambda_3 \lambda_4 \, dx, & 1 \leq l \leq 3.
\]

Moreover, on \(F_i \), one has

\[
\Pi_K v/F_i = \tilde{\Pi}_K v/F_i + \alpha_i p_i,
\]

so that \(\Pi_K v/F_i \) depends only on \(v/F_i \).

Now, for each \(h \), we consider a triangulation \(\mathcal{T}_h \) of \(\Omega \) made of tetrahedra with diameters bounded by \(h \) and we assume that the family \((\mathcal{T}_h)_h \) is regular.

With each \(K \) in \(\mathcal{T}_h \), we associate the space \(P_K \) defined by (III.1); then Lemma III.1 allows us to define an operator \(\Pi_h \) from \(\mathcal{V}_0(\Omega)^3 \cap H^1_0(\Omega)^3 \) into \(X_h \) by (II.5).

Lemma III. 2. The operator \(\Pi_h \) satisfies (H2) for \(m = 2 \).
Proof. Clearly, one has

\[\int_K \text{div}(v - \Pi_K v) \, dx = \int_K x_i \text{div}(v - \Pi_K v) \, dx = 0, \quad 1 \leq l \leq 3, \]

so that \(\forall q_h \in M_h^{(2)}, (q_h, \text{div}(v - \Pi_K v)) = 0 \).

Moreover, we know that (see [2]), for \(k = 0 \) and \(1 \),

\[|v - \hat{\Pi}_K v|_{k,K} \leq Ch^{3-k} |v|_{3,K}. \]

Let us compute \(\Pi_K v - \hat{\Pi}_K v = \sum_{i=1}^4 \alpha_i p_i \). As in Section II,

\[|\alpha_i| \leq C \int_{F_i} |\hat{\psi} - \hat{\Pi}_K \hat{\psi}| \, d\hat{\sigma}; \]

therefore, as \(P_2(\hat{K}) \) is invariant under \(\hat{\Pi}_K \),

\[|\alpha_i| \leq C |\psi|_{3,\hat{K}} \leq Ch^{3/2} |v|_{3,K}. \]

The previous inequalities, together with (II.6), yield

\[|v - \Pi_K v|_{k,K} \leq Ch^{3-k} |v|_{3,K}. \]

Finally, we compute \(\Pi_K v - \Pi_K v = \beta \lambda_1 \lambda_2 \lambda_3 \lambda_4 \). Clearly, one has

(III.7) \[|\lambda_1 \lambda_2 \lambda_3 \lambda_4| \leq C \left(\int_K \|D^k(\lambda_1 \lambda_2 \lambda_3 \lambda_4)\|^2 \|B_K\|^{2k} |\det B_K| \, dx \right)^{1/2} \]

\[\leq C h^{2/k}. \]

and, by (III.6),

\[|\beta| \leq C |\det B_K|^{-1} \left| \int_K x_i \text{div}(v - \Pi_K v) \, dx \right|. \]

We use Green’s formula

\[|\beta| \leq C |\det B_K|^{-1} \left| \int_K (v - \Pi_K v) \, dx \right| + \int_{\partial K} x_i (v - \Pi_K v) \cdot n \, d\sigma \]

\[\leq C \left(|\det B_K|^{-1/2} |v - \Pi_K v|_{0,K} + |\det B_K|^{-1} \int x_i (v - \Pi_K v) \cdot n \, d\sigma \right). \]

But we remark that, since \(x = B_K \hat{x} + b_K \),

\[\int_{\partial K} x_i (v - \Pi_K v) \cdot n \, d\sigma = \int_{\partial K} (B_K \hat{x})_i (v - \Pi_K v) \cdot n |\det B_K/\partial K| \, d\hat{\sigma} \]

\[+ b_K \int_{\partial K} (v - \Pi_K v) \cdot n |\det B_K/\partial K| \, d\hat{\sigma}. \]

Therefore,

\[\left| \int_{\partial K} x_i (v - \Pi_K v) \cdot n \, d\sigma \right| \leq \|B_K\| \int_{\partial K} |v - \Pi_K v| \, d\sigma \]

\[+ |b_K| \left| \int_{\partial K} (v - \Pi_K v) \cdot n \, d\sigma \right|. \]
Since the last term is equal to 0, we obtain

\[|\beta| \leq C \left(|\text{det } B_K|^{-1/2} \|v - \Pi_K v\|_{0,K} + |\text{det } B_K|^{-1/2} \|B_K\| \sum_{i=1}^4 |\text{mes } F_i|^{1/2} \|v - \Pi_K v\|_{0,F_i} \right) \]

so that, by Lemma II.3,

\[|\beta| \leq \left\{ h^{-3/2}_K h^3_K + h^{-3}_K h^2_K \right\} |v|_{3,K} \leq Ch^{3/2}_K |v|_{3,K}. \]

The previous inequalities yield, for \(k = 0 \) and 1,

\[|v - \Pi_K v|_{k,K} \leq Ch^{3-k}_K |v|_{3,K}. \]

By (II.8), the hypothesis (H3) is an immediate consequence of

Lemma III.3. For any \(v \) in \(H^1_0(\Omega)^3 \), there exists \(v_h \) in \(X_h \) such that

\[(v_h, \text{div}(v - v_h)) = 0 \]

and \(\|v_h\|_{1,\Omega} \leq C\|v\|_{1,\Omega}. \)

Proof. Let us denote by \(w_h \) the interpolate of \(v \) in the space

\[\left\{ u_h \in \mathcal{C}^0(\overline{\Omega}) \cap H^1_0(\Omega); \forall K \in \mathcal{T}_h, u_{h,K} \in P_2(K) \right\}, \]

defined by local regularization as in [1], so that (II.10) is still satisfied.

Then, we consider the element \(v_h \) in \(V_h \) equal on \(K \) to

\[v_h = w_h + \sum_{i=1}^4 \alpha_i p_i + \beta \lambda_1 \lambda_2 \lambda_3 \lambda_4 \]

with

\[\alpha_i = \left(\int_{F_i} (v - w_h) \cdot n_i \, d\sigma \right) / \int_{F_i} \prod_{j \neq i} \lambda_j \, d\sigma, \]

\[\beta_i = -\int_K x_i \text{div} \left(v - w_h - \sum_{i=1}^4 \alpha_i p_i \right) \, dx / \int_K \lambda_1 \lambda_2 \lambda_3 \lambda_4 \, dx. \]

Clearly, one has \(\forall q_h \in M_h^{(2)}, (q_h, \text{div}(v - v_h)) = 0 \). Moreover, by (II.6) and (III.7),

\[\|v_h\|_{1,K} \leq \|w_h\|_{1,K} + Ch^{1/2}_K \left(\sum_{i=1}^4 |\alpha_i| + |\beta| \right). \]

The \(\alpha_i \)'s still satisfy (II.11). We also have

\[|\beta| \leq C|\text{det } B_K|^{-1} \left\{ \left| \int_K \left(v - w_h - \sum_{i=1}^4 \alpha_i p_i \right) \, dx \right| \right. \]

\[+ \left. \left| \int_{\partial K} x_i \left(v - w_h - \sum_{i=1}^4 \alpha_i p_i \right) \cdot n \, d\sigma \right| \right\}. \]
By the same way as in the proof of Lemma III.2,

\[|\beta_i| \leq C \left[|\det B_K|^{-1/2} \left\| v - w_h - \sum_{i=1}^{4} \alpha_i p_i \right\|_{0,K} + |\det B_K|^{-1} \| B_K \| \right.
\times \left. \sum_{i=1}^{4} |\text{mes } F_i| h^{-3/2} \left(\left\| v - w_h - \sum_{i=1}^{4} \alpha_i p_i \right\|_{0,K} + h_K \| v - w_h - \sum_{i=1}^{4} \alpha_i p_i \|_{1,K} \right) \right]
\leq C \left(h_K^{-2/3} \| v - w_h \|_{0,K} + h_K^{-1/2} \| v - w_h \|_{1,K} + \sum_{i=1}^{4} |\alpha_i| \right). \]

Finally, we obtain

\[\| v_h \|_{1,K} \leq \| w_h \|_{1,K} + C h_K^{-1} \left(\| v - w_h \|_{0,K} + h_K \| v - w_h \|_{1,K} \right), \]

which, together with (II.10), yields \(\| v_h \|_{1,\Omega} \leq C \| v \|_{1,\Omega}. \)

Consequently, this element can be used to solve the Stokes problem in the three-dimensional case with an \(O(h^2) \)-error estimate.

C.N.R.S. et Université P. et M. Curie
Analyse Numérique
4, place Jussieu
75230 Paris Cédex 05, France

C.N.R.S. et Université de Rennes
U.E.R. de Mathématiques et Informatique
Rennes Beaulieu
35042 Rennes Cédex, France