Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



A globally convergent method for simultaneously finding polynomial roots

Authors: L. Pasquini and D. Trigiante
Journal: Math. Comp. 44 (1985), 135-149
MSC: Primary 65H05
MathSciNet review: 771036
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A new method for the simultaneous approximation of all the roots of a polynomial is given. The method converges for almost every initial approximation, the set of the exceptional starting points being a closed set of measure zero, at least if all the polynomial roots are real and simple. The method exhibits quadratic convergence not only to simple, but also to multiple roots.

References [Enhancements On Off] (What's this?)

  • [1] M. W. Green, A. J. Korsak & M. C. Pease, "Simultaneous iteration towards all roots of a complex polynomial," SIAM Rev., v. 18, 1976, pp. 501-502.
  • [2] I. O. Kerner, "Ein Gesamtschrittverfahren zur Berechnung der Nullstellen von Polynomen," Numer. Math., v. 8, 1966, pp. 290-294. MR 0203931 (34:3778)
  • [3] I. O. Kerner, "Algorithm 283," Comm. ACM, v. 9, 1966, p. 273.
  • [4] E. Durand, Solution Numérique des Equations Algébriques, Tome I, Masson, Paris, 1968.
  • [5] L. W. Ehrlich, "A modified Newton method for polynomials," Comm. ACM, v. 10, 1967, pp. 107-109.
  • [6] O. Aberth, "Iteration methods for finding all zeros of a polynomial simultaneously," Math. Comp., v. 27, 1973, pp. 339-344. MR 0329236 (48:7578)
  • [7] L. Pasquini & D. Trigiante, "Il metodo di continuazione e l'approssimazione simultanea degli zeri di un polinomio," Seminario dell'Ist. di Mat. Appl., Fac.di Ing., Univ. di Roma, 1981, pp. 128-146.
  • [8] M. L. Locascio, L. Pasquini & D. Trigiante, "Un polialgoritmo a convergenza rapida per la determinazione simultanea degli zeri reali di un polinomio e delle loro molteplicità," Monografie di Soft. Matem., N. 30, Pubbl. dell'IAC, 1984.
  • [9] C. de Boor, A Practical Guide to Splines, Springer-Verlag, Berlin and New York, 1978. MR 507062 (80a:65027)
  • [10] L. B. Rall, "Convergence of the Newton process to multiple solutions," Numer. Math., v. 9, 1966, pp. 23-37. MR 0210316 (35:1209)
  • [11] B. Barna, "Über die Divergenzpunkte des Newtonschen Verfahrens zur Bestimmung von Wurzeln algebraischer Gleichungen. II," Publ. Math. Debrecen, v. 4, 1956, pp. 384-397. MR 0078956 (18:5f)
  • [12] S. Smale, "The fundamental theorem of algebra and complexity theory," Bull. Amer. Math. Soc (N.S.), v. 4, 1981, pp. 1-36. MR 590817 (83i:65044)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65H05

Retrieve articles in all journals with MSC: 65H05

Additional Information

Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society