Gaussian quadrature involving Einstein and Fermi functions with an application to summation of series
Authors:
Walter Gautschi and Gradimir V. MilovanoviÄ‡
Journal:
Math. Comp. 44 (1985), 177190, S1
MSC:
Primary 65D32; Secondary 33A65, 65A05, 65B10, 8108, 8208
MathSciNet review:
771039
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Polynomials , , are constructed which are orthogonal with respect to the weight distributions and , , on . Momentrelated methods being inadequate, a discretized Stieltjes procedure is used to generate the coefficients in the recursion formula , , , . The discretization is effected by the GaussLaguerre and a composite Fejér quadrature rule, respectively. Numerical values of , as well as associated error constants, are provided for . These allow the construction of Gaussian quadrature formulae, including error terms, with up to 40 points. Examples of npoint formulae, , are provided in the supplements section at the end of this issue. Such quadrature formulae may prove useful in solid state physics calculations and can also be applied to sum slowly convergent series.
 [1]
J. S. Blakemore, Solid State Physics, 2nd ed., Saunders, Philadelphia, Pa., 1974.
 [2]
W. Gautschi, "Algorithm 542Incomplete gamma functions," ACM Trans. Math. Software, v. 5, 1979, pp. 482489.
 [3]
Walter
Gautschi, A survey of GaussChristoffel quadrature formulae,
E. B. Christoffel (Aachen/Monschau, 1979) Birkhäuser, BaselBoston,
Mass., 1981, pp. 72–147. MR 661060
(83g:41031)
 [4]
Walter
Gautschi, On generating orthogonal polynomials, SIAM J. Sci.
Statist. Comput. 3 (1982), no. 3, 289–317. MR 667829
(84e:65022), http://dx.doi.org/10.1137/0903018
 [5]
J. F. Hart et al., Computer Approximations, Wiley, New YorkLondonSydney, 1968.
 [6]
A. McLellan IV, "Tables of the Riemann zeta function and related functions," Math. Comp., v. 22, 1968, Review 69, pp. 687688.
 [7]
S. S. Mitra & N. E. Massa, "Lattice vibrations in semiconductors," Chapter 3 in: Band Theory and Transport Properties (W. Paul, ed.), pp. 81192. Handbook on Semiconductors (T. S. Moss, ed.), Vol. 1. NorthHolland, Amsterdam, 1982.
 [8]
F. Reif, Fundamentals of Statistical and Thermal Physics, McGrawHill, New York, 1965.
 [9]
R. A. Smith, Semiconductors, 2nd ed., Cambridge Univ. Press, Cambridge, 1978.
 [10]
R. J. Van Overstraeten, H. J. DeMan & R. P. Mertens, "Transport equations in heavy doped silicon," IEEE Trans. Electron Dev., v. ED20, 1973, pp. 290298.
 [1]
 J. S. Blakemore, Solid State Physics, 2nd ed., Saunders, Philadelphia, Pa., 1974.
 [2]
 W. Gautschi, "Algorithm 542Incomplete gamma functions," ACM Trans. Math. Software, v. 5, 1979, pp. 482489.
 [3]
 W. Gautschi, "A survey of GaussChristoffel quadrature formulae," in E. B. ChristoffelThe Influence of his Work in Mathematics and the Physical Sciences (P. L. Butzer and F. Fehér, eds.), Birkhäuser Verlag, Basel, 1981, pp. 72147. MR 661060 (83g:41031)
 [4]
 W. Gautschi, "On generating orthogonal polynomials," SIAM J. Sci. Statist. Comput., v. 3, 1982, pp. 289317. MR 667829 (84e:65022)
 [5]
 J. F. Hart et al., Computer Approximations, Wiley, New YorkLondonSydney, 1968.
 [6]
 A. McLellan IV, "Tables of the Riemann zeta function and related functions," Math. Comp., v. 22, 1968, Review 69, pp. 687688.
 [7]
 S. S. Mitra & N. E. Massa, "Lattice vibrations in semiconductors," Chapter 3 in: Band Theory and Transport Properties (W. Paul, ed.), pp. 81192. Handbook on Semiconductors (T. S. Moss, ed.), Vol. 1. NorthHolland, Amsterdam, 1982.
 [8]
 F. Reif, Fundamentals of Statistical and Thermal Physics, McGrawHill, New York, 1965.
 [9]
 R. A. Smith, Semiconductors, 2nd ed., Cambridge Univ. Press, Cambridge, 1978.
 [10]
 R. J. Van Overstraeten, H. J. DeMan & R. P. Mertens, "Transport equations in heavy doped silicon," IEEE Trans. Electron Dev., v. ED20, 1973, pp. 290298.
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
65D32,
33A65,
65A05,
65B10,
8108,
8208
Retrieve articles in all journals
with MSC:
65D32,
33A65,
65A05,
65B10,
8108,
8208
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718198507710391
PII:
S 00255718(1985)07710391
Article copyright:
© Copyright 1985
American Mathematical Society
