Odd triperfect numbers are divisible by eleven distinct prime factors

Author:
Masao Kishore

Journal:
Math. Comp. **44** (1985), 261-263

MSC:
Primary 11A25

MathSciNet review:
771048

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that an odd triperfect number has at least eleven distinct prime factors.

**[1]**Walter E. Beck and Rudolph M. Najar,*A lower bound for odd triperfects*, Math. Comp.**38**(1982), no. 157, 249–251. MR**637303**, 10.1090/S0025-5718-1982-0637303-9**[2]**Graeme L. Cohen,*On odd perfect numbers. II. Multiperfect numbers and quasiperfect numbers*, J. Austral. Math. Soc. Ser. A**29**(1980), no. 3, 369–384. MR**569525****[3]**Masao Kishore,*Odd triperfect numbers*, Math. Comp.**42**(1984), no. 165, 231–233. MR**725999**, 10.1090/S0025-5718-1984-0725999-4**[4]**Wayne McDaniel,*On odd multiply perfect numbers*, Boll. Un. Mat. Ital. (4)**3**(1970), 185–190. MR**0262154****[5]**Carl Pomerance,*Odd perfect numbers are divisible by at least seven distinct primes*, Acta Arith.**25**(1973/74), 265–300. MR**0340169**

Retrieve articles in *Mathematics of Computation*
with MSC:
11A25

Retrieve articles in all journals with MSC: 11A25

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1985-0771048-2

Article copyright:
© Copyright 1985
American Mathematical Society