A Note on the Diophantine Equation

\[x^3 + y^3 + z^3 = 3 \]

By J. W. S. Cassels

Abstract. Any integral solution of the title equation has \(x = y = z \).

The report of Scarowsky and Boyarsky \cite{3} that an extensive computer search has failed to turn up any further integral solutions of the title equation prompts me to give the proof of a result which I noted many years ago and which might be of use in further work (cf. footnote on p. 505 of \cite{2}).

Theorem. Any integral solution of

\[x^3 + y^3 + z^3 = 3 \]

has

\[x = y = z \]

Proof. Trivially,

\[x = y = z \]

We work in the ring \(\mathbb{Z}[\rho] \) of Eisenstein integers, where \(\rho \) is a cube root of unity. If \(\alpha \in \mathbb{Z}[\rho] \) is prime to 3, then there is precisely one unit \(\epsilon = \pm \rho^j \) \((j = 0, 1, 2) \) such that \(e\alpha \equiv 1 \). The supplement \cite{1} to the law of cubic reciprocity states that if \(\pi \in \mathbb{Z}[\rho] \) is prime, \(\pi \equiv 1 \), then 3 is a cubic residue of \(\pi \) in \(\mathbb{Z}[\rho] \) precisely when \(\pi = a \) \((9) \) for some \(a \in \mathbb{Z} \). It follows that if \(\alpha \in \mathbb{Z}[\rho] \), \(\alpha \equiv 1 \) and if 3 is congruent to a cube modulo \(\alpha \), then \(\alpha \equiv b \) \((9) \) for some \(b \in \mathbb{Z} \).

Put

\[\alpha = -\rho^2 x - \rho y, \]

so

\[\alpha = x + (x - y)\rho \equiv 1 \]

by (3). By (1) we have \(z^3 \equiv 3 \) \((\alpha) \), so the preceding remarks apply. Hence \(x - y \equiv 0 \) \((9) \). Finally, (2) follows by symmetry.

Department of Pure Mathematics
and Mathematical Statistics
University of Cambridge
16 Mill Lane
Cambridge CB2 1SB, England

Received March 28, 1984.
1980 Mathematics Subject Classification. Primary 10B15.