Mixed finite element methods for quasilinear second-order elliptic problems

Author:
F. A. Milner

Journal:
Math. Comp. **44** (1985), 303-320

MSC:
Primary 65N30; Secondary 65N15

DOI:
https://doi.org/10.1090/S0025-5718-1985-0777266-1

MathSciNet review:
777266

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A mixed finite element method is developed to approximate the solution of a quasilinear second-order elliptic partial differential equation. The existence and uniqueness of the approximation are demonstrated and optimal rate error estimates are derived.

**[1]**S. Agmon, A. Douglis, and L. Nirenberg,*Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I*, Comm. Pure Appl. Math.**12**(1959), 623–727. MR**0125307**, https://doi.org/10.1002/cpa.3160120405**[2]**F. Brezzi,*On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers*, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge**8**(1974), no. R-2, 129–151 (English, with loose French summary). MR**0365287****[3]**Philippe G. Ciarlet,*The finite element method for elliptic problems*, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. Studies in Mathematics and its Applications, Vol. 4. MR**0520174****[4]**Jim Douglas Jr.,*𝐻¹-Galerkin methods for a nonlinear Dirichlet problem*, Mathematical aspects of finite element methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975) Springer, Berlin, 1977, pp. 64–86. Lecture Notes in Math., Vol. 606. MR**0471369****[5]**J. Douglas Jr. and J. E. Roberts,*Mixed finite element methods for second order elliptic problems*, Mat. Apl. Comput.**1**(1982), no. 1, 91–103 (English, with Portuguese summary). MR**667620****[6]**Jim Douglas Jr. and Jean E. Roberts,*Global estimates for mixed methods for second order elliptic equations*, Math. Comp.**44**(1985), no. 169, 39–52. MR**771029**, https://doi.org/10.1090/S0025-5718-1985-0771029-9**[7]**R. S. Falk and J. E. Osborn,*Error estimates for mixed methods*, RAIRO Anal. Numér.**14**(1980), no. 3, 249–277 (English, with French summary). MR**592753****[8]**David Gilbarg and Neil S. Trudinger,*Elliptic partial differential equations of second order*, Springer-Verlag, Berlin-New York, 1977. Grundlehren der Mathematischen Wissenschaften, Vol. 224. MR**0473443****[9]**Claes Johnson and Vidar Thomée,*Error estimates for some mixed finite element methods for parabolic type problems*, RAIRO Anal. Numér.**15**(1981), no. 1, 41–78 (English, with French summary). MR**610597****[10]**J. L. Lions & E. Magenes,*Non Homogeneous Boundary Value Problems and Applications*, I, Springer-Verlag, Berlin, 1970.**[11]**J.-C. Nédélec,*Mixed finite elements in 𝑅³*, Numer. Math.**35**(1980), no. 3, 315–341. MR**592160**, https://doi.org/10.1007/BF01396415**[12]**P.-A. Raviart and J. M. Thomas,*A mixed finite element method for 2nd order elliptic problems*, Mathematical aspects of finite element methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975) Springer, Berlin, 1977, pp. 292–315. Lecture Notes in Math., Vol. 606. MR**0483555****[13]**Reinhard Scholz,*𝐿_{∞}-convergence of saddle-point approximations for second order problems*, RAIRO Anal. Numér.**11**(1977), no. 2, 209–216, 221 (English, with French summary). MR**0448942**, https://doi.org/10.1051/m2an/1977110202091**[14]**R. Scholz,*A remark on the rate of convergence for a mixed finite-element method for second order problems*, Numer. Funct. Anal. Optim.**4**(1981/82), no. 3, 269–277. MR**665363**, https://doi.org/10.1080/01630568208816117**[15]**R. Scholz,*Optimal 𝐿_{∞}-estimates for a mixed finite element method for second order elliptic and parabolic problems*, Calcolo**20**(1983), no. 3, 355–377 (1984). MR**761790**, https://doi.org/10.1007/BF02576470**[16]**J. M. Thomas,*Sur l'Analyse Numérique des Méthodes d'Éléments Finis Hybrides et Mixtes*, Thèse, Université P. et M. Curie, Paris, 1977.**[17]**Hans Triebel,*Interpolation theory, function spaces, differential operators*, North-Holland Mathematical Library, vol. 18, North-Holland Publishing Co., Amsterdam-New York, 1978. MR**503903**

Retrieve articles in *Mathematics of Computation*
with MSC:
65N30,
65N15

Retrieve articles in all journals with MSC: 65N30, 65N15

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1985-0777266-1

Article copyright:
© Copyright 1985
American Mathematical Society