Improved accuracy by adapted mesh-refinements in the finite element method

Author:
Kenneth Eriksson

Journal:
Math. Comp. **44** (1985), 321-343

MSC:
Primary 65N30; Secondary 65N50

DOI:
https://doi.org/10.1090/S0025-5718-1985-0777267-3

MathSciNet review:
777267

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For appropriately adapted mesh-refinements, optimal order error estimates are proved for the finite element approximate solution of the Neumann problem for the second-order elliptic equation , where is the Dirac distribution.

**[1]**R. A. Adams,*Sobolev Spaces*, Academic Press, New York, 1975. MR**0450957 (56:9247)****[2]**I. Babuška, "Error bounds for the finite element method,"*Numer. Math.*, v. 16, 1971, pp. 322-333. MR**0288971 (44:6166)****[3]**I. Babuška & A. K. Aziz, "Survey lectures on the mathematical foundations of the finite element method," Section 6.3.6 of*The Mathematical Foundations of the Finite Element Method with Applications to Parital Differential Equations*, (A. K. Aziz, ed.), Academic Press, New York, 1973.**[4]**J. H. Bramble & S. R. Hilbert, "Estimation of linear functionals on Sobolev spaces with application to Fourier transforms and spline interpolation,"*SIAM J. Numer. Anal.*, v. 7, 1970, pp. 112-124. MR**0263214 (41:7819)****[5]**J. H. Bramble & A. H. Schatz, "Estimates for spline projections,"*RAIRO Anal. Numér.*, v. 10, 1976, pp. 5-37. MR**0436620 (55:9563)****[6]**P. G. Ciarlet,*The Finite Element Method for Elliptic Problems*, North-Holland, Amsterdam, 1978. MR**0520174 (58:25001)****[7]**P. G. Ciarlet, "Discrete variational Green's function. I,"*Aequationes Math.*, v. 4, 1970, pp. 74-82. MR**0273838 (42:8714)****[8]**K. Eriksson,*Improved Convergence by Mesh-Refinement in the Finite Element Method*, Thesis, Chalmers University of Technology and the University of Göteborg, 1981.**[9]**S. R. Hilbert, "A mollifier useful for approximations in Sobolev spaces and some applications to approximating solutions of differential equations,"*Math. Comp.*, v. 27, 1973, pp. 81-89. MR**0331715 (48:10047)****[10]**Ju. P. Krasovskii, "Isolation of singularities of the Green's function,"*Math. USSR-Izv.*, v. 1, 1967, pp. 935-966.**[11]**J. L. Lions & E. Magenes,*Problèmes aux Limites Non Homogènes et Applications*, Vol. 1, Dunod, Paris, 1968. MR**0247243 (40:512)****[12]**J. A. Nitsche & A. H. Schatz, "Interior estimates for Ritz-Galerkin methods,"*Math. Comp.*, v. 28, 1974, pp. 937-958. MR**0373325 (51:9525)****[13]**A. H. Schatz & L. B. Wahlbin, "Interior maximum norm estimates for finite element methods",*Math. Comp.*, v. 31, 1977, pp. 414-442. MR**0431753 (55:4748)****[14]**R. Scott, "Finite element convergence for singular data,"*Numer. Math.*, v. 21, 1973, pp. 317-327. MR**0337032 (49:1805)****[15]**R. Scott, "Optimal estimates for the finite element method on irregular meshes,"*Math. Comp.*, v. 30, 1976, pp. 681-697. MR**0436617 (55:9560)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65N30,
65N50

Retrieve articles in all journals with MSC: 65N30, 65N50

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1985-0777267-3

Keywords:
Neumann problem,
Green's function,
finite element method,
mesh-refinement,
error estimate

Article copyright:
© Copyright 1985
American Mathematical Society