Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Improved accuracy by adapted mesh-refinements in the finite element method


Author: Kenneth Eriksson
Journal: Math. Comp. 44 (1985), 321-343
MSC: Primary 65N30; Secondary 65N50
DOI: https://doi.org/10.1090/S0025-5718-1985-0777267-3
MathSciNet review: 777267
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For appropriately adapted mesh-refinements, optimal order error estimates are proved for the finite element approximate solution of the Neumann problem for the second-order elliptic equation $ Lu = \delta $, where $ \delta $ is the Dirac distribution.


References [Enhancements On Off] (What's this?)

  • [1] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975. MR 0450957 (56:9247)
  • [2] I. Babuška, "Error bounds for the finite element method," Numer. Math., v. 16, 1971, pp. 322-333. MR 0288971 (44:6166)
  • [3] I. Babuška & A. K. Aziz, "Survey lectures on the mathematical foundations of the finite element method," Section 6.3.6 of The Mathematical Foundations of the Finite Element Method with Applications to Parital Differential Equations, (A. K. Aziz, ed.), Academic Press, New York, 1973.
  • [4] J. H. Bramble & S. R. Hilbert, "Estimation of linear functionals on Sobolev spaces with application to Fourier transforms and spline interpolation," SIAM J. Numer. Anal., v. 7, 1970, pp. 112-124. MR 0263214 (41:7819)
  • [5] J. H. Bramble & A. H. Schatz, "Estimates for spline projections," RAIRO Anal. Numér., v. 10, 1976, pp. 5-37. MR 0436620 (55:9563)
  • [6] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978. MR 0520174 (58:25001)
  • [7] P. G. Ciarlet, "Discrete variational Green's function. I," Aequationes Math., v. 4, 1970, pp. 74-82. MR 0273838 (42:8714)
  • [8] K. Eriksson, Improved Convergence by Mesh-Refinement in the Finite Element Method, Thesis, Chalmers University of Technology and the University of Göteborg, 1981.
  • [9] S. R. Hilbert, "A mollifier useful for approximations in Sobolev spaces and some applications to approximating solutions of differential equations," Math. Comp., v. 27, 1973, pp. 81-89. MR 0331715 (48:10047)
  • [10] Ju. P. Krasovskii, "Isolation of singularities of the Green's function," Math. USSR-Izv., v. 1, 1967, pp. 935-966.
  • [11] J. L. Lions & E. Magenes, Problèmes aux Limites Non Homogènes et Applications, Vol. 1, Dunod, Paris, 1968. MR 0247243 (40:512)
  • [12] J. A. Nitsche & A. H. Schatz, "Interior estimates for Ritz-Galerkin methods," Math. Comp., v. 28, 1974, pp. 937-958. MR 0373325 (51:9525)
  • [13] A. H. Schatz & L. B. Wahlbin, "Interior maximum norm estimates for finite element methods", Math. Comp., v. 31, 1977, pp. 414-442. MR 0431753 (55:4748)
  • [14] R. Scott, "Finite element convergence for singular data," Numer. Math., v. 21, 1973, pp. 317-327. MR 0337032 (49:1805)
  • [15] R. Scott, "Optimal $ {L_\infty }$ estimates for the finite element method on irregular meshes," Math. Comp., v. 30, 1976, pp. 681-697. MR 0436617 (55:9560)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65N30, 65N50

Retrieve articles in all journals with MSC: 65N30, 65N50


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1985-0777267-3
Keywords: Neumann problem, Green's function, finite element method, mesh-refinement, error estimate
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society