Finite element methods of optimal order for problems with singular data
Author:
Kenneth Eriksson
Journal:
Math. Comp. 44 (1985), 345360
MSC:
Primary 65N30; Secondary 65N50
MathSciNet review:
777268
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: An adapted finite element method is proposed for a class of elliptic problems with singular data. The idea is to subtract the main singularity from the solution and to solve for the remainder using suitable meshrefinements. Optimal order error estimates are proved.
 [1]
Ivo
Babuška, Errorbounds for finite element method, Numer.
Math. 16 (1970/1971), 322–333. MR 0288971
(44 #6166)
 [2]
Ivo
Babuška and A.
K. Aziz, Survey lectures on the mathematical foundations of the
finite element method, The mathematical foundations of the finite
element method with applications to partial differential equations (Proc.
Sympos., Univ. Maryland, Baltimore, Md., 1972) Academic Press, New York,
1972, pp. 1–359. With the collaboration of G. Fix and R. B.
Kellogg. MR
0421106 (54 #9111)
 [3]
J.
H. Bramble and A.
H. Schatz, Estimates for spline projections, Rev.
Française Automat. Informat. Recherche Opérationnelle
Sér. \jname RAIRO Analyse Numérique 10
(1976), no. R2, 5–37. MR 0436620
(55 #9563)
 [4]
Philippe
G. Ciarlet, The finite element method for elliptic problems,
NorthHolland Publishing Co., AmsterdamNew YorkOxford, 1978. Studies in
Mathematics and its Applications, Vol. 4. MR 0520174
(58 #25001)
 [5]
Philippe
G. Ciarlet, Discrete variational Green’s function. I,
Aequationes Math. 4 (1970), 74–82. MR 0273838
(42 #8714)
 [6]
K. Eriksson, Improved Convergence by MeshRefinement in the Finite Element Method, Thesis, Chalmers University of Technology and the University of Göteborg, 1981.
 [7]
Kenneth
Eriksson, Improved accuracy by adapted
meshrefinements in the finite element method, Math. Comp. 44 (1985), no. 170, 321–343. MR 777267
(86j:65155a), http://dx.doi.org/10.1090/S00255718198507772673
 [8]
Ju. P. Krasovskii, "Isolation of singularities of the Green's function," Math. USSRIzv., v. 1, 1967, pp. 935966.
 [9]
J.L.
Lions and E.
Magenes, Problèmes aux limites non homogènes et
applications. Vol. 1, Travaux et Recherches Mathématiques, No.
17, Dunod, Paris, 1968 (French). MR 0247243
(40 #512)
 [10]
A.
H. Schatz and L.
B. Wahlbin, Interior maximum norm estimates for
finite element methods, Math. Comp.
31 (1977), no. 138, 414–442. MR 0431753
(55 #4748), http://dx.doi.org/10.1090/S0025571819770431753X
 [11]
Ridgway
Scott, Finite element convergence for singular data, Numer.
Math. 21 (1973/74), 317–327. MR 0337032
(49 #1805)
 [1]
 I. Babuška, "Error bounds for the finite element method," Numer. Math., v. 16, 1971, pp. 322333. MR 0288971 (44:6166)
 [2]
 I. Babuška & A. K. Aziz, "Survey lectures on the mathematical foundations of the finite element method," Section 6.3.6 of The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, (A. K. Aziz, ed.), Academic Press, New York, 1972. MR 0421106 (54:9111)
 [3]
 J. H. Bramble & A. H. Schatz, "Estimates for spline projections," RAIRO Anal. Numér., v. 10, 1976, pp. 537. MR 0436620 (55:9563)
 [4]
 P. G. Ciarlet, The Finite Element Method for Elliptic Problems, NorthHolland, Amsterdam, 1978. MR 0520174 (58:25001)
 [5]
 P. G. Ciarlet, "Discrete variational Green's function. I," Aequationes Math., v. 4, 1970, pp. 7482. MR 0273838 (42:8714)
 [6]
 K. Eriksson, Improved Convergence by MeshRefinement in the Finite Element Method, Thesis, Chalmers University of Technology and the University of Göteborg, 1981.
 [7]
 K. Eriksson, "Improved accuracy by adapted meshrefinements in the finite element method," Math. Comp. (this issue). MR 777267 (86j:65155a)
 [8]
 Ju. P. Krasovskii, "Isolation of singularities of the Green's function," Math. USSRIzv., v. 1, 1967, pp. 935966.
 [9]
 J. L. Lions & E. Magenes, Problèmes aux Limites Non Homogènes et Applications, Vol. 1, Dunod, Paris, 1968. MR 0247243 (40:512)
 [10]
 A. H. Schatz & L. B. Wahlbin, "Interior maximum norm estimates for finite element methods," Math. Comp., v. 31, 1977, pp. 414442. MR 0431753 (55:4748)
 [11]
 R. Scott, "Finite element convergence for singular data," Numer. Math., v. 21, 1973, pp. 317327. MR 0337032 (49:1805)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
65N30,
65N50
Retrieve articles in all journals
with MSC:
65N30,
65N50
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718198507772685
PII:
S 00255718(1985)07772685
Keywords:
Neumann problem,
Green's function,
adapted finite element methods,
meshrefinement,
optimal order,
error estimate
Article copyright:
© Copyright 1985
American Mathematical Society
