Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

On the steady states of finitely many chemical cells


Authors: J. Bigge and E. Bohl
Journal: Math. Comp. 44 (1985), 405-415
MSC: Primary 80A32; Secondary 92A40
DOI: https://doi.org/10.1090/S0025-5718-1985-0777272-7
MathSciNet review: 777272
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Mathematical models of the form (1) and (2) for diffusion-reaction phenomena are discussed. The occurrence of bifurcation points in the discrete case (2) is explained via a simple two-dimensional model.


References [Enhancements On Off] (What's this?)

  • [1] E. Allgower, "On a discretization of $ y''+ \lambda {y^k} = 0$" in Proc. Conf. Roy. Irish Acad., (J. J. H. Miller, ed.), Academic Press, New York, 1975. MR 0428719 (55:1739)
  • [2a] R. Aris, Mathematical Modelling Techniques, Res. Notes in Math., vol. 24, San Francisco, London, Melbourne, 1968.
  • [2b] R. Aris, The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts, Vols. I, II, Oxford, 1975.
  • [3] W.-J. Beyn, Lösungszweige nichtlinearer Randwertaufgaben und ihre Approximation mit dem Differenzenverfahren, Habilitationsschrift, University of Konstanz, 1981.
  • [4] W.-J. Beyn & J. Lorenz, "Spurious solutions for discrete superlinear boundary value problems," Computing, v. 28, 1982, pp. 42-51. MR 645968 (83b:47069)
  • [5] J. Bigge, Lösungszweige von diskreten Reaktions-Transport-Modellen, Ph.D-thesis. University of Konstanz, Hartung-Goree-Verl., 1984.
  • [6] J. Bigge & E. Bohl, "Deformations of the bifurcation diagram due to discretization," Math. Comp. (To appear.) MR 804931 (87f:65087)
  • [7a] E. Bohl, "On the bifurcation diagram of discrete analogues for ordinary bifurcation problems," Math. Methods Appl. Sci., v. 1, 1979, pp. 566-671. MR 548689 (81g:65107)
  • [7b] E. Bohl, Finite Modelle gewöhnlicher Randwertaufgaben, Teubner Studienbücher, Teubner, 1981. MR 633643 (83g:65080)
  • [8] E. J. Doedel & W.-J. Beyn, "Stability and multiplicity of solutions to discretizations of nonlinear ordinary differential equations," SIAM J. Sci. Statist. Comput., v. 2, 1981, pp. 107-120. MR 618636 (83d:65223)
  • [9] R. Gaines, "Difference equations associated with boundary value problems for second order nonlinear ordinary differential equations," SIAM J. Numer. Anal., v. 11, 1974, pp. 411-434. MR 0383757 (52:4637)
  • [10] J. P. Kernevez, Enzyme Mathematics, Stud. Math. Appl., vol. 10, North-Holland, Amsterdam, 1980. MR 594596 (82e:92013)
  • [11] J. P. Kernevez & D. Thomas, "Numerical analysis of some biochemical systems," Appl. Math. Optim., v. 1, 1975, pp. 222-285. MR 0403716 (53:7527)
  • [12] H. O. Peitgen, D. Saupe & K. Schmitt, "Nonlinear elliptic boundary value problems versus their finite difference approximations: Numerically irrelevant solutions," J. Reine Angew. Math., v. 322, 1981, pp. 74-117. MR 603027 (82h:65076)
  • [13] H.-O. Peitgen & K. Schmitt, Positive and Spurious Solutions of Nonlinear Eigenvalue Problems, Technical Report No. 42, University of Bremen, 1981. MR 644335 (83d:35011)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 80A32, 92A40

Retrieve articles in all journals with MSC: 80A32, 92A40


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1985-0777272-7
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society